在巴罗角引线开通期间,大气高压驱动不对称海冰漂移

IF 4.4 2区 地球科学 Q1 GEOGRAPHY, PHYSICAL Cryosphere Pub Date : 2023-08-09 DOI:10.5194/tc-17-3229-2023
MacKenzie E. Jewell, J. Hutchings, C. Geiger
{"title":"在巴罗角引线开通期间,大气高压驱动不对称海冰漂移","authors":"MacKenzie E. Jewell, J. Hutchings, C. Geiger","doi":"10.5194/tc-17-3229-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Throughout winter, the winds of migrating weather systems drive the recurrent opening of sea ice leads from Alaska's northernmost headland, Point Barrow. As leads extend offshore into the Beaufort and Chukchi seas, they produce sea ice velocity discontinuities that are challenging to represent in models. We investigate how synoptic wind patterns form leads originating from Point Barrow and influence patterns of sea ice drift across the Pacific Arctic. We identify 135 leads from satellite thermal infrared imagery between January–April 2000–2020 and generate an ensemble of lead-opening sequences by averaging atmospheric conditions and ice velocity across events. On average, leads open as migrating atmospheric highs drive differing ice–coast interactions across Point Barrow. Northerly winds compress the Beaufort ice pack against the coast over several days, slowing ice drift. As winds west of Point Barrow shift offshore, the ice cover fractures and a lead extends from the headland into the pack interior. Ice west of the lead accelerates as it separates from the coast, drifting twice as fast (relative to winds) as ice east of the lead, which remains coastally bound. Consequently, sea ice drift and its contribution to climatological ice circulation becomes zonally asymmetric across Point Barrow. These findings highlight how coastal boundaries modify the response of the consolidated ice pack to wind forcing in winter, producing spatially varying regimes of ice stress and kinematics. Observed connections between winds, ice drift, and lead opening provide test cases for sea ice models aiming to capture realistic ice transport during these recurrent deformation events.\n","PeriodicalId":56315,"journal":{"name":"Cryosphere","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Atmospheric highs drive asymmetric sea ice drift during lead opening from Point Barrow\",\"authors\":\"MacKenzie E. Jewell, J. Hutchings, C. Geiger\",\"doi\":\"10.5194/tc-17-3229-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Throughout winter, the winds of migrating weather systems drive the recurrent opening of sea ice leads from Alaska's northernmost headland, Point Barrow. As leads extend offshore into the Beaufort and Chukchi seas, they produce sea ice velocity discontinuities that are challenging to represent in models. We investigate how synoptic wind patterns form leads originating from Point Barrow and influence patterns of sea ice drift across the Pacific Arctic. We identify 135 leads from satellite thermal infrared imagery between January–April 2000–2020 and generate an ensemble of lead-opening sequences by averaging atmospheric conditions and ice velocity across events. On average, leads open as migrating atmospheric highs drive differing ice–coast interactions across Point Barrow. Northerly winds compress the Beaufort ice pack against the coast over several days, slowing ice drift. As winds west of Point Barrow shift offshore, the ice cover fractures and a lead extends from the headland into the pack interior. Ice west of the lead accelerates as it separates from the coast, drifting twice as fast (relative to winds) as ice east of the lead, which remains coastally bound. Consequently, sea ice drift and its contribution to climatological ice circulation becomes zonally asymmetric across Point Barrow. These findings highlight how coastal boundaries modify the response of the consolidated ice pack to wind forcing in winter, producing spatially varying regimes of ice stress and kinematics. Observed connections between winds, ice drift, and lead opening provide test cases for sea ice models aiming to capture realistic ice transport during these recurrent deformation events.\\n\",\"PeriodicalId\":56315,\"journal\":{\"name\":\"Cryosphere\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/tc-17-3229-2023\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/tc-17-3229-2023","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

摘要整个冬天,迁徙的天气系统的风驱动着阿拉斯加最北端的巴罗角不断开放的海冰。当导线延伸到波弗特海和楚科奇海时,它们会产生海冰速度不连续性,这在模型中很难表示。我们研究了天气风模式如何形成源自巴罗角的导线,以及太平洋北极海冰漂移的影响模式。我们从2000年1月至2020年4月的卫星热红外图像中识别了135条铅,并通过平均大气条件和各事件的冰速生成了一组铅开放序列。平均而言,由于迁移的大气高压驱动了巴罗角不同的冰-海岸相互作用,导线打开。几天来,北风将波弗特冰袋吹向海岸,减缓了冰的漂移。当巴罗角以西的风转移到近海时,冰盖破裂,一根引线从岬延伸到了狼群内部。铅以西的冰在与海岸分离时加速,漂移的速度(相对于风)是铅以东的冰的两倍,铅仍沿海岸移动。因此,海冰漂移及其对气候冰循环的贡献在巴罗角呈带状不对称。这些发现突显了海岸边界如何改变冬季固结冰盖对风力的响应,从而产生空间变化的冰应力和运动学状态。观测到的风、冰漂移和铅开口之间的联系为海冰模型提供了测试案例,旨在捕捉这些反复发生的变形事件中真实的冰传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atmospheric highs drive asymmetric sea ice drift during lead opening from Point Barrow
Abstract. Throughout winter, the winds of migrating weather systems drive the recurrent opening of sea ice leads from Alaska's northernmost headland, Point Barrow. As leads extend offshore into the Beaufort and Chukchi seas, they produce sea ice velocity discontinuities that are challenging to represent in models. We investigate how synoptic wind patterns form leads originating from Point Barrow and influence patterns of sea ice drift across the Pacific Arctic. We identify 135 leads from satellite thermal infrared imagery between January–April 2000–2020 and generate an ensemble of lead-opening sequences by averaging atmospheric conditions and ice velocity across events. On average, leads open as migrating atmospheric highs drive differing ice–coast interactions across Point Barrow. Northerly winds compress the Beaufort ice pack against the coast over several days, slowing ice drift. As winds west of Point Barrow shift offshore, the ice cover fractures and a lead extends from the headland into the pack interior. Ice west of the lead accelerates as it separates from the coast, drifting twice as fast (relative to winds) as ice east of the lead, which remains coastally bound. Consequently, sea ice drift and its contribution to climatological ice circulation becomes zonally asymmetric across Point Barrow. These findings highlight how coastal boundaries modify the response of the consolidated ice pack to wind forcing in winter, producing spatially varying regimes of ice stress and kinematics. Observed connections between winds, ice drift, and lead opening provide test cases for sea ice models aiming to capture realistic ice transport during these recurrent deformation events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cryosphere
Cryosphere GEOGRAPHY, PHYSICAL-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
8.70
自引率
17.30%
发文量
240
审稿时长
4-8 weeks
期刊介绍: The Cryosphere (TC) is a not-for-profit international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on all aspects of frozen water and ground on Earth and on other planetary bodies. The main subject areas are the following: ice sheets and glaciers; planetary ice bodies; permafrost and seasonally frozen ground; seasonal snow cover; sea ice; river and lake ice; remote sensing, numerical modelling, in situ and laboratory studies of the above and including studies of the interaction of the cryosphere with the rest of the climate system.
期刊最新文献
Greenland and Canadian Arctic ice temperature profiles database The stability of present-day Antarctic grounding lines – Part 2: Onset of irreversible retreat of Amundsen Sea glaciers under current climate on centennial timescales cannot be excluded The stability of present-day Antarctic grounding lines – Part 1: No indication of marine ice sheet instability in the current geometry Phase-field models of floe fracture in sea ice Relevance of warm air intrusions for Arctic satellite sea ice concentration time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1