{"title":"用于太阳黑子群磁性类型自动识别的深度学习","authors":"Yuanhui Fang, Yanmei Cui, X. Ao","doi":"10.1155/2019/9196234","DOIUrl":null,"url":null,"abstract":"Sunspots are darker areas on the Sun’s photosphere and most of solar eruptions occur in complex sunspot groups. The Mount Wilson classification scheme describes the spatial distribution of magnetic polarities in sunspot groups, which plays an important role in forecasting solar flares. With the rapid accumulation of solar observation data, automatic recognition of magnetic type in sunspot groups is imperative for prompt solar eruption forecast. We present in this study, based on the SDO/HMI SHARP data taken during the time interval 2010-2017, an automatic procedure for the recognition of the predefined magnetic types in sunspot groups utilizing a convolutional neural network (CNN) method. Three different models (A, B, and C) take magnetograms, continuum images, and the two-channel pictures as input, respectively. The results show that CNN has a productive performance in identification of the magnetic types in solar active regions (ARs). The best recognition result emerges when continuum images are used as input data solely, and the total accuracy exceeds 95%, for which the recognition accuracy of Alpha type reaches 98% while the accuracy for Beta type is slightly lower but maintains above 88%.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/9196234","citationCount":"19","resultStr":"{\"title\":\"Deep Learning for Automatic Recognition of Magnetic Type in Sunspot Groups\",\"authors\":\"Yuanhui Fang, Yanmei Cui, X. Ao\",\"doi\":\"10.1155/2019/9196234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sunspots are darker areas on the Sun’s photosphere and most of solar eruptions occur in complex sunspot groups. The Mount Wilson classification scheme describes the spatial distribution of magnetic polarities in sunspot groups, which plays an important role in forecasting solar flares. With the rapid accumulation of solar observation data, automatic recognition of magnetic type in sunspot groups is imperative for prompt solar eruption forecast. We present in this study, based on the SDO/HMI SHARP data taken during the time interval 2010-2017, an automatic procedure for the recognition of the predefined magnetic types in sunspot groups utilizing a convolutional neural network (CNN) method. Three different models (A, B, and C) take magnetograms, continuum images, and the two-channel pictures as input, respectively. The results show that CNN has a productive performance in identification of the magnetic types in solar active regions (ARs). The best recognition result emerges when continuum images are used as input data solely, and the total accuracy exceeds 95%, for which the recognition accuracy of Alpha type reaches 98% while the accuracy for Beta type is slightly lower but maintains above 88%.\",\"PeriodicalId\":48962,\"journal\":{\"name\":\"Advances in Astronomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2019/9196234\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2019/9196234\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2019/9196234","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Deep Learning for Automatic Recognition of Magnetic Type in Sunspot Groups
Sunspots are darker areas on the Sun’s photosphere and most of solar eruptions occur in complex sunspot groups. The Mount Wilson classification scheme describes the spatial distribution of magnetic polarities in sunspot groups, which plays an important role in forecasting solar flares. With the rapid accumulation of solar observation data, automatic recognition of magnetic type in sunspot groups is imperative for prompt solar eruption forecast. We present in this study, based on the SDO/HMI SHARP data taken during the time interval 2010-2017, an automatic procedure for the recognition of the predefined magnetic types in sunspot groups utilizing a convolutional neural network (CNN) method. Three different models (A, B, and C) take magnetograms, continuum images, and the two-channel pictures as input, respectively. The results show that CNN has a productive performance in identification of the magnetic types in solar active regions (ARs). The best recognition result emerges when continuum images are used as input data solely, and the total accuracy exceeds 95%, for which the recognition accuracy of Alpha type reaches 98% while the accuracy for Beta type is slightly lower but maintains above 88%.
期刊介绍:
Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.