识别增加认知储备的遗传因素:一种理论方法

Daniel Neidigk, Allie Linkous, R. Guttmann
{"title":"识别增加认知储备的遗传因素:一种理论方法","authors":"Daniel Neidigk, Allie Linkous, R. Guttmann","doi":"10.3897/rio.9.e107939","DOIUrl":null,"url":null,"abstract":"Studies have demonstrated that some individuals display pathological hallmarks of Alzheimer's disease (AD) but are not afflicted with cognitive decline. The ability to maintain cognitive function despite the presence of pathology is referred to as cognitive reserve. This project aims to identify the molecular pathways involved in cognitive reserve using Drosophila melanogaster (Drosophila) models of AD. Specifically, a theoretical approach using experimental evolution to drive a population of AD-like Drosophila carrying a tau mutation to develop cognitive reserve is proposed. To accomplish this, a population of AD-like Drosophila will be placed in a single population cage along with wild-type flies and forced to compete for food and water. The first generation of AD-like Drosophila will be generated using random mutagenesis of the initially isogenic AD-like fly. The selected tau mutant displays a rough eye condition which allows for easy distinction between tau mutant and wild-type flies. It is hypothesised that AD-like flies with cognitive decline will be unable to survive because their limited cognitive abilities will prevent them from effectively competing for food and water. In contrast, AD-like flies with mutations that promote cognitive reserve will be better capable of survival. After 90-99% of mutant flies have died, the surviving mutant flies will be back-crossed to the P1 mutant to maintain tau mutation stability. It is expected that artificial selection will result in the creation of a generation of tau mutant flies that demonstrate cognitive abilities comparable to those of wild-type flies despite maintaining an AD-like tau mutation. This approach will monitor the successful trajectory of the evolution of increased cognitive reserve through survival curve analysis and measures of cognition. A limitation of the method is that only a dominant mutation or series of dominant mutations would be identified using this approach.","PeriodicalId":92718,"journal":{"name":"Research ideas and outcomes","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying genetic factors that increase cognitive reserve: A theoretical approach\",\"authors\":\"Daniel Neidigk, Allie Linkous, R. Guttmann\",\"doi\":\"10.3897/rio.9.e107939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studies have demonstrated that some individuals display pathological hallmarks of Alzheimer's disease (AD) but are not afflicted with cognitive decline. The ability to maintain cognitive function despite the presence of pathology is referred to as cognitive reserve. This project aims to identify the molecular pathways involved in cognitive reserve using Drosophila melanogaster (Drosophila) models of AD. Specifically, a theoretical approach using experimental evolution to drive a population of AD-like Drosophila carrying a tau mutation to develop cognitive reserve is proposed. To accomplish this, a population of AD-like Drosophila will be placed in a single population cage along with wild-type flies and forced to compete for food and water. The first generation of AD-like Drosophila will be generated using random mutagenesis of the initially isogenic AD-like fly. The selected tau mutant displays a rough eye condition which allows for easy distinction between tau mutant and wild-type flies. It is hypothesised that AD-like flies with cognitive decline will be unable to survive because their limited cognitive abilities will prevent them from effectively competing for food and water. In contrast, AD-like flies with mutations that promote cognitive reserve will be better capable of survival. After 90-99% of mutant flies have died, the surviving mutant flies will be back-crossed to the P1 mutant to maintain tau mutation stability. It is expected that artificial selection will result in the creation of a generation of tau mutant flies that demonstrate cognitive abilities comparable to those of wild-type flies despite maintaining an AD-like tau mutation. This approach will monitor the successful trajectory of the evolution of increased cognitive reserve through survival curve analysis and measures of cognition. A limitation of the method is that only a dominant mutation or series of dominant mutations would be identified using this approach.\",\"PeriodicalId\":92718,\"journal\":{\"name\":\"Research ideas and outcomes\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research ideas and outcomes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3897/rio.9.e107939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research ideas and outcomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/rio.9.e107939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究表明,一些人表现出阿尔茨海默病(AD)的病理特征,但并没有受到认知能力下降的影响。尽管存在病理,但保持认知功能的能力被称为认知储备。本项目旨在利用AD的果蝇(Drosophila melanogaster, Drosophila)模型,确定参与认知储备的分子途径。具体来说,提出了一种利用实验进化来驱动携带tau突变的ad样果蝇种群发展认知储备的理论方法。为了实现这一目标,一群类ad果蝇将与野生型果蝇一起被放在一个单独的种群笼子里,并被迫争夺食物和水。第一代ad样果蝇将通过对最初等基因ad样果蝇的随机诱变产生。所选的tau突变体显示出粗糙的眼睛状况,这使得tau突变体和野生型苍蝇容易区分。据推测,认知能力下降的类ad果蝇将无法生存,因为它们有限的认知能力将阻止它们有效地竞争食物和水。相比之下,带有促进认知储备突变的ad样果蝇将更有能力生存。在90-99%的突变蝇死亡后,幸存的突变蝇将与P1突变蝇回交,以维持tau突变的稳定性。预计人工选择将导致产生一代tau突变果蝇,尽管保持ad样tau突变,但它们表现出与野生型果蝇相当的认知能力。这种方法将通过生存曲线分析和认知测量来监测认知储备增加进化的成功轨迹。该方法的一个局限性是,使用这种方法只能识别一个显性突变或一系列显性突变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying genetic factors that increase cognitive reserve: A theoretical approach
Studies have demonstrated that some individuals display pathological hallmarks of Alzheimer's disease (AD) but are not afflicted with cognitive decline. The ability to maintain cognitive function despite the presence of pathology is referred to as cognitive reserve. This project aims to identify the molecular pathways involved in cognitive reserve using Drosophila melanogaster (Drosophila) models of AD. Specifically, a theoretical approach using experimental evolution to drive a population of AD-like Drosophila carrying a tau mutation to develop cognitive reserve is proposed. To accomplish this, a population of AD-like Drosophila will be placed in a single population cage along with wild-type flies and forced to compete for food and water. The first generation of AD-like Drosophila will be generated using random mutagenesis of the initially isogenic AD-like fly. The selected tau mutant displays a rough eye condition which allows for easy distinction between tau mutant and wild-type flies. It is hypothesised that AD-like flies with cognitive decline will be unable to survive because their limited cognitive abilities will prevent them from effectively competing for food and water. In contrast, AD-like flies with mutations that promote cognitive reserve will be better capable of survival. After 90-99% of mutant flies have died, the surviving mutant flies will be back-crossed to the P1 mutant to maintain tau mutation stability. It is expected that artificial selection will result in the creation of a generation of tau mutant flies that demonstrate cognitive abilities comparable to those of wild-type flies despite maintaining an AD-like tau mutation. This approach will monitor the successful trajectory of the evolution of increased cognitive reserve through survival curve analysis and measures of cognition. A limitation of the method is that only a dominant mutation or series of dominant mutations would be identified using this approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2 weeks
期刊最新文献
ECOSENSE - Multi-scale quantification and modelling of spatio-temporal dynamics of ecosystem processes by smart autonomous sensor networks Earth deity shrines of the Greater Taipei area: A first edition curated dataset Restoring the Lower Danube River's wetlands: a short report on the hydrological effectiveness of completed projects Interim Report NFDI4Chem 2023 The Meise Botanic Garden Herbarium Data Management Plan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1