卷积和递归神经网络在人脸图像分析中的应用

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Foundations of Computing and Decision Sciences Pub Date : 2019-09-01 DOI:10.2478/fcds-2019-0017
Kıvanç Yüksel, W. Skarbek
{"title":"卷积和递归神经网络在人脸图像分析中的应用","authors":"Kıvanç Yüksel, W. Skarbek","doi":"10.2478/fcds-2019-0017","DOIUrl":null,"url":null,"abstract":"Abstract In the presented research two Deep Neural Network (DNN) models for face image analysis were developed. The first one detects eyes, nose and mouth and it is based on a moderate size Convolutional Neural Network (CNN) while the second one identifies 68 landmarks resulting in a novel Face Alignment Network composed of a CNN and a recurrent neural network. The Face Parts Detector inputs face image and outputs the pixel coordinates of bounding boxes for detected facial parts. The Face Alignment Network extracts deep features in CNN module while in the recurrent module it generates 68 facial landmarks using not only this deep features, but also the geometry of facial parts. Both methods are robust to varying head poses and changing light conditions.","PeriodicalId":42909,"journal":{"name":"Foundations of Computing and Decision Sciences","volume":"44 1","pages":"331 - 347"},"PeriodicalIF":1.8000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Convolutional and Recurrent Neural Networks for Face Image Analysis\",\"authors\":\"Kıvanç Yüksel, W. Skarbek\",\"doi\":\"10.2478/fcds-2019-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the presented research two Deep Neural Network (DNN) models for face image analysis were developed. The first one detects eyes, nose and mouth and it is based on a moderate size Convolutional Neural Network (CNN) while the second one identifies 68 landmarks resulting in a novel Face Alignment Network composed of a CNN and a recurrent neural network. The Face Parts Detector inputs face image and outputs the pixel coordinates of bounding boxes for detected facial parts. The Face Alignment Network extracts deep features in CNN module while in the recurrent module it generates 68 facial landmarks using not only this deep features, but also the geometry of facial parts. Both methods are robust to varying head poses and changing light conditions.\",\"PeriodicalId\":42909,\"journal\":{\"name\":\"Foundations of Computing and Decision Sciences\",\"volume\":\"44 1\",\"pages\":\"331 - 347\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computing and Decision Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/fcds-2019-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computing and Decision Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fcds-2019-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

摘要

提出了两种用于人脸图像分析的深度神经网络(DNN)模型。第一个检测眼睛,鼻子和嘴巴,它基于一个中等大小的卷积神经网络(CNN),第二个识别68个地标,从而形成一个由CNN和循环神经网络组成的新颖的面部对齐网络。人脸部分检测器输入人脸图像并输出检测到的人脸部分的边界框像素坐标。人脸对齐网络在CNN模块中提取深度特征,而在循环模块中,它不仅利用这些深度特征,还利用面部部位的几何形状生成68个面部地标。这两种方法都对不同的头部姿势和变化的光线条件具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convolutional and Recurrent Neural Networks for Face Image Analysis
Abstract In the presented research two Deep Neural Network (DNN) models for face image analysis were developed. The first one detects eyes, nose and mouth and it is based on a moderate size Convolutional Neural Network (CNN) while the second one identifies 68 landmarks resulting in a novel Face Alignment Network composed of a CNN and a recurrent neural network. The Face Parts Detector inputs face image and outputs the pixel coordinates of bounding boxes for detected facial parts. The Face Alignment Network extracts deep features in CNN module while in the recurrent module it generates 68 facial landmarks using not only this deep features, but also the geometry of facial parts. Both methods are robust to varying head poses and changing light conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations of Computing and Decision Sciences
Foundations of Computing and Decision Sciences COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
2.20
自引率
9.10%
发文量
16
审稿时长
29 weeks
期刊最新文献
A DNA Algorithm for Calculating the Maximum Flow of a Network Traceability of Architectural Design Decisions and Software Artifacts: A Systematic Mapping Study Traveling salesman problem parallelization by solving clustered subproblems Towards automated recommendations for drunk driving penalties in Poland - a case study analysis in selected court Designing a Tri-Objective, Sustainable, Closed-Loop, and Multi-Echelon Supply Chain During the COVID-19 and Lockdowns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1