生物炭表面积对碳热还原纳米零价铁结构和重金属去除性能的影响

IF 20.2 Q1 MATERIALS SCIENCE, PAPER & WOOD Journal of Bioresources and Bioproducts Pub Date : 2023-07-07 DOI:10.1016/j.jobab.2023.06.003
Tharindu N. Karunaratne , Prashan M. Rodrigo , Daniel O. Oguntuyi , Todd E. Mlsna , Jilei Zhang , Xuefeng Zhang
{"title":"生物炭表面积对碳热还原纳米零价铁结构和重金属去除性能的影响","authors":"Tharindu N. Karunaratne ,&nbsp;Prashan M. Rodrigo ,&nbsp;Daniel O. Oguntuyi ,&nbsp;Todd E. Mlsna ,&nbsp;Jilei Zhang ,&nbsp;Xuefeng Zhang","doi":"10.1016/j.jobab.2023.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>Carbothermal reduction using biochar (BC) is a green and effective method of synthesizing BC-supported nanoscale zero-valent iron (nanoFe<sup>0</sup>) composites. However, the effect of BC surface area on the structure, distribution, and performance such as the heavy metal uptake capacity of nanoFe<sup>0</sup> particles remains unclear. Soybean stover-based BCs with different surface areas (1.7 − 1 472 m<sup>2</sup>/g) were prepared in this study. They have been used for in-situ synthesis BCs-supported nanoFe<sup>0</sup> particles through carbothermal reduction of ferrous chloride. The BCs-supported nanoFe<sup>0</sup> particles were found to be covered with graphene shells and dispersed onto BC surfaces, forming the BC-supported graphene-encapsulated nanoFe<sup>0</sup> (BC-G@Fe<sup>0</sup>) composite. These graphene shells covering the nanoFe<sup>0</sup> particles were formed because of gaseous carbon evolved from biomass carbonization reacting with iron oxides/iron salts. Increasing BC surface area decreased the average diameters of nanoFe<sup>0</sup> particles, indicating a higher BC surface area alleviated the aggregation of nanoFe<sup>0</sup> particles, which resulted in higher heavy metal uptake capacity. At the optimized condition, BC-G@Fe<sup>0</sup> composite exhibited uptake capacities of 124.4, 121.8, 254.5, and 48.0 mg/g for Cu<sup>2+</sup>, Pb<sup>2+</sup>, Ag<sup>+</sup>, and As<sup>3+</sup>, respectively (pH 5, 25 °C). Moreover, the BC-G@Fe<sup>0</sup> composite also demonstrated high stability for Cu<sup>2+</sup> removal from the fixed-bed continuous flow, in which 1 g of BC-G@Fe<sup>0</sup> can work for 120 h in a 4 mg/L Cu<sup>2+</sup> flow continually and clean 28.6 L Cu<sup>2+</sup> contaminated water. Furthermore, the BC-G@Fe<sup>0</sup> composite can effectively immobilize the bioavailable As<sup>3+</sup> from the contaminated soil, i.e., 5% (<em>w</em>) of BC-G@Fe<sup>0</sup> composite addition can immobilize up to 92.2% bioavailable As<sup>3+</sup> from the contaminated soil.</p></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"8 4","pages":"Pages 388-398"},"PeriodicalIF":20.2000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling biochar surface area on structure and heavy metal removal performances of carbothermal reduced nanoscale zero-valent iron\",\"authors\":\"Tharindu N. Karunaratne ,&nbsp;Prashan M. Rodrigo ,&nbsp;Daniel O. Oguntuyi ,&nbsp;Todd E. Mlsna ,&nbsp;Jilei Zhang ,&nbsp;Xuefeng Zhang\",\"doi\":\"10.1016/j.jobab.2023.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbothermal reduction using biochar (BC) is a green and effective method of synthesizing BC-supported nanoscale zero-valent iron (nanoFe<sup>0</sup>) composites. However, the effect of BC surface area on the structure, distribution, and performance such as the heavy metal uptake capacity of nanoFe<sup>0</sup> particles remains unclear. Soybean stover-based BCs with different surface areas (1.7 − 1 472 m<sup>2</sup>/g) were prepared in this study. They have been used for in-situ synthesis BCs-supported nanoFe<sup>0</sup> particles through carbothermal reduction of ferrous chloride. The BCs-supported nanoFe<sup>0</sup> particles were found to be covered with graphene shells and dispersed onto BC surfaces, forming the BC-supported graphene-encapsulated nanoFe<sup>0</sup> (BC-G@Fe<sup>0</sup>) composite. These graphene shells covering the nanoFe<sup>0</sup> particles were formed because of gaseous carbon evolved from biomass carbonization reacting with iron oxides/iron salts. Increasing BC surface area decreased the average diameters of nanoFe<sup>0</sup> particles, indicating a higher BC surface area alleviated the aggregation of nanoFe<sup>0</sup> particles, which resulted in higher heavy metal uptake capacity. At the optimized condition, BC-G@Fe<sup>0</sup> composite exhibited uptake capacities of 124.4, 121.8, 254.5, and 48.0 mg/g for Cu<sup>2+</sup>, Pb<sup>2+</sup>, Ag<sup>+</sup>, and As<sup>3+</sup>, respectively (pH 5, 25 °C). Moreover, the BC-G@Fe<sup>0</sup> composite also demonstrated high stability for Cu<sup>2+</sup> removal from the fixed-bed continuous flow, in which 1 g of BC-G@Fe<sup>0</sup> can work for 120 h in a 4 mg/L Cu<sup>2+</sup> flow continually and clean 28.6 L Cu<sup>2+</sup> contaminated water. Furthermore, the BC-G@Fe<sup>0</sup> composite can effectively immobilize the bioavailable As<sup>3+</sup> from the contaminated soil, i.e., 5% (<em>w</em>) of BC-G@Fe<sup>0</sup> composite addition can immobilize up to 92.2% bioavailable As<sup>3+</sup> from the contaminated soil.</p></div>\",\"PeriodicalId\":52344,\"journal\":{\"name\":\"Journal of Bioresources and Bioproducts\",\"volume\":\"8 4\",\"pages\":\"Pages 388-398\"},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioresources and Bioproducts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2369969823000427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioresources and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2369969823000427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

摘要

生物炭碳热还原是一种合成生物炭负载纳米零价铁(nanoFe0)复合材料的绿色有效方法。然而,BC表面积对纳米Fe0颗粒的结构、分布和性能(如重金属吸收能力)的影响尚不清楚。具有不同表面积的大豆秸秆基BCs(1.7 − 1472m2/g)。它们已被用于通过氯化亚铁的碳热还原原位合成BCs负载的纳米Fe0颗粒。BCs负载的纳米Fe0颗粒被石墨烯壳覆盖并分散在BC表面,形成了BC负载的石墨烯包封的纳米Fe0(BC-G@Fe0)复合材料。这些覆盖纳米Fe0颗粒的石墨烯壳是由于生物质碳化产生的气态碳与氧化铁/铁盐反应而形成的。增加BC表面积降低了纳米Fe0颗粒的平均直径,表明较高的BC表面积减轻了纳米FeO颗粒的聚集,从而导致较高的重金属吸收能力。在优化条件下,BC-G@Fe0复合物的吸收能力分别为124.4121.8254.5和48.0 Cu2+、Pb2+、Ag+和As3+分别为mg/g(pH 5,25°C)。此外BC-G@Fe0复合材料还显示出从固定床连续流中去除Cu2+的高稳定性,其中 g,共BC-G@Fe0可以工作120 4中的h mg/L Cu2+连续流动且清洁28.6 L Cu2+污染水。此外BC-G@Fe0复合材料可以有效地固定污染土壤中的生物可利用As3+,即5%(w)的BC-G@Fe0复合添加剂可以固定污染土壤中高达92.2%的生物可利用As3+。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unraveling biochar surface area on structure and heavy metal removal performances of carbothermal reduced nanoscale zero-valent iron

Carbothermal reduction using biochar (BC) is a green and effective method of synthesizing BC-supported nanoscale zero-valent iron (nanoFe0) composites. However, the effect of BC surface area on the structure, distribution, and performance such as the heavy metal uptake capacity of nanoFe0 particles remains unclear. Soybean stover-based BCs with different surface areas (1.7 − 1 472 m2/g) were prepared in this study. They have been used for in-situ synthesis BCs-supported nanoFe0 particles through carbothermal reduction of ferrous chloride. The BCs-supported nanoFe0 particles were found to be covered with graphene shells and dispersed onto BC surfaces, forming the BC-supported graphene-encapsulated nanoFe0 (BC-G@Fe0) composite. These graphene shells covering the nanoFe0 particles were formed because of gaseous carbon evolved from biomass carbonization reacting with iron oxides/iron salts. Increasing BC surface area decreased the average diameters of nanoFe0 particles, indicating a higher BC surface area alleviated the aggregation of nanoFe0 particles, which resulted in higher heavy metal uptake capacity. At the optimized condition, BC-G@Fe0 composite exhibited uptake capacities of 124.4, 121.8, 254.5, and 48.0 mg/g for Cu2+, Pb2+, Ag+, and As3+, respectively (pH 5, 25 °C). Moreover, the BC-G@Fe0 composite also demonstrated high stability for Cu2+ removal from the fixed-bed continuous flow, in which 1 g of BC-G@Fe0 can work for 120 h in a 4 mg/L Cu2+ flow continually and clean 28.6 L Cu2+ contaminated water. Furthermore, the BC-G@Fe0 composite can effectively immobilize the bioavailable As3+ from the contaminated soil, i.e., 5% (w) of BC-G@Fe0 composite addition can immobilize up to 92.2% bioavailable As3+ from the contaminated soil.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bioresources and Bioproducts
Journal of Bioresources and Bioproducts Agricultural and Biological Sciences-Forestry
CiteScore
39.30
自引率
0.00%
发文量
38
审稿时长
12 weeks
期刊最新文献
Editorial Board Enhanced biomass densification pretreatment using binary chemicals for efficient lignocellulosic valorization Development of Methylene Bis-Benzotriazolyl Tetramethylbutylphenol-grafted lignin sub-microspheres loaded with TiO2 for sunscreen applications Cavitation as a zero-waste circular economy process to convert citrus processing waste into biopolymers in high demand Selective biomass conversion over novel designed tandem catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1