病毒性人畜共患病原体对SNP rs1010211的适应性的定量分析

IF 1.8 4区 生物学 Q3 BIOPHYSICS Journal of Biological Physics Pub Date : 2022-04-15 DOI:10.1007/s10867-022-09606-y
Daniah Alsufyani, James Lindesay
{"title":"病毒性人畜共患病原体对SNP rs1010211的适应性的定量分析","authors":"Daniah Alsufyani,&nbsp;James Lindesay","doi":"10.1007/s10867-022-09606-y","DOIUrl":null,"url":null,"abstract":"<div><p>Widespread genotyping of human populations in environmental homeostasis has created opportunities to quantify how environmental parameters affect the genomic distribution of variants in healthy populations. This represents an ongoing natural experiment upon the human species that can only be understood through developing models of adaptation. By examining the information dynamics of optimal SNP distributions within such populations, “adaptive forces” on genomic variants can be quantified through comparisons between different populations. To this end, we are performing double-blind scans of SNPs in order to ascertain any potential smooth functional relationships between the frequencies of the variants and changes in quantified environmental parameters. At present, we have sequentially examined more than twenty thousand SNPs (on chromosome 3) of nine homeostatic native populations for potential adaptive flagging of the variants as functions of 15 environmental parameters. Our first significant flag has related rs1010211 to viral pathogens in mammalian hosts. Such pathogens present a significant risk for the emergence of new infectious diseases in humans. This genomic variant is within the gene TNIK, which is a germinal center kinase (GCK). GCKs are participants in both adaptive and innate immune regulation. However, the function of TNIK is not fully understood. We quantify the adaptive force on the C allele due to the pathogens as 0.04 GEU’s/viral species.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10867-022-09606-y.pdf","citationCount":"1","resultStr":"{\"title\":\"Quantification of adaptive forces on SNP rs1010211 due to viral zoonotic pathogens\",\"authors\":\"Daniah Alsufyani,&nbsp;James Lindesay\",\"doi\":\"10.1007/s10867-022-09606-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Widespread genotyping of human populations in environmental homeostasis has created opportunities to quantify how environmental parameters affect the genomic distribution of variants in healthy populations. This represents an ongoing natural experiment upon the human species that can only be understood through developing models of adaptation. By examining the information dynamics of optimal SNP distributions within such populations, “adaptive forces” on genomic variants can be quantified through comparisons between different populations. To this end, we are performing double-blind scans of SNPs in order to ascertain any potential smooth functional relationships between the frequencies of the variants and changes in quantified environmental parameters. At present, we have sequentially examined more than twenty thousand SNPs (on chromosome 3) of nine homeostatic native populations for potential adaptive flagging of the variants as functions of 15 environmental parameters. Our first significant flag has related rs1010211 to viral pathogens in mammalian hosts. Such pathogens present a significant risk for the emergence of new infectious diseases in humans. This genomic variant is within the gene TNIK, which is a germinal center kinase (GCK). GCKs are participants in both adaptive and innate immune regulation. However, the function of TNIK is not fully understood. We quantify the adaptive force on the C allele due to the pathogens as 0.04 GEU’s/viral species.</p></div>\",\"PeriodicalId\":612,\"journal\":{\"name\":\"Journal of Biological Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10867-022-09606-y.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Physics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10867-022-09606-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-022-09606-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

环境稳态中人类群体的广泛基因分型为量化环境参数如何影响健康人群中变异的基因组分布创造了机会。这代表了人类物种正在进行的自然实验,只有通过发展适应模型才能理解。通过检查这些种群中最佳SNP分布的信息动态,可以通过不同种群之间的比较来量化基因组变异的“适应性力量”。为此,我们正在对snp进行双盲扫描,以确定变异频率与量化环境参数变化之间的任何潜在平滑函数关系。目前,我们已经连续检测了9个稳态本地种群的2万多个snp(3号染色体上),以寻找15个环境参数对变异的潜在适应性标记。我们的第一个重要标志是rs1010211与哺乳动物宿主的病毒病原体有关。这类病原体对人类出现新的传染病具有重大风险。这种基因组变异位于基因TNIK内,这是一种生发中心激酶(GCK)。gck参与了适应性和先天免疫调节。然而,TNIK的功能尚不完全清楚。我们将病原菌对C等位基因的适应力量化为0.04 GEU /病毒种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantification of adaptive forces on SNP rs1010211 due to viral zoonotic pathogens

Widespread genotyping of human populations in environmental homeostasis has created opportunities to quantify how environmental parameters affect the genomic distribution of variants in healthy populations. This represents an ongoing natural experiment upon the human species that can only be understood through developing models of adaptation. By examining the information dynamics of optimal SNP distributions within such populations, “adaptive forces” on genomic variants can be quantified through comparisons between different populations. To this end, we are performing double-blind scans of SNPs in order to ascertain any potential smooth functional relationships between the frequencies of the variants and changes in quantified environmental parameters. At present, we have sequentially examined more than twenty thousand SNPs (on chromosome 3) of nine homeostatic native populations for potential adaptive flagging of the variants as functions of 15 environmental parameters. Our first significant flag has related rs1010211 to viral pathogens in mammalian hosts. Such pathogens present a significant risk for the emergence of new infectious diseases in humans. This genomic variant is within the gene TNIK, which is a germinal center kinase (GCK). GCKs are participants in both adaptive and innate immune regulation. However, the function of TNIK is not fully understood. We quantify the adaptive force on the C allele due to the pathogens as 0.04 GEU’s/viral species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Physics
Journal of Biological Physics 生物-生物物理
CiteScore
3.00
自引率
5.60%
发文量
20
审稿时长
>12 weeks
期刊介绍: Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials. The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.
期刊最新文献
Pseudo-trajectory inference for identifying essential regulations and molecules in cell fate decisions Stochastic model of seed dispersal with homogeneous and non-homogeneous Poisson processes under habitat reduction conditions Exploring the effects of simulated microgravity on esophageal cancer cells: insights into morphological, growth behavior, adhesion, and genetic damage A possible origin of the inverted vertebrate retina revealed by physical modeling Motor domain of condensin and step formation in extruding loop of DNA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1