João Paulo Brubacher, Guilherme Garcia de Oliveira, Laurindo Antonio Guasselli
{"title":"大南州降水空间数据库","authors":"João Paulo Brubacher, Guilherme Garcia de Oliveira, Laurindo Antonio Guasselli","doi":"10.1590/0102-77863630009","DOIUrl":null,"url":null,"abstract":"Resumo Atualmente, ao obter séries históricas de precipitação, é necessário realizar o preenchimento de falhas, interpolar e estimar a precipitação para área de interesse, principalmente em locais com baixa densidade de estações pluviométricas. Então, este estudo teve como objetivo gerar um banco de dados espacial com séries históricas de precipitação para o estado do Rio Grande do Sul, que permita a consulta a índices de precipitação por bacia, por município e por coordenadas geográficas, sem a necessidade de pós-processamento. A metodologia foi estruturada em cinco etapas: adquirir, organizar e preencher falhas das séries históricas de precipitação; interpolar, por meio do método Inverso da Potência da Distância (IPD), dados de chuva para uma malha regular com resolução espacial de 20 km; calcular índices de precipitação (Tempo de Retorno, Chuva Média Mensal e Anual, índice de Anomalia de Chuvas (IAC), Número de dias de Precipitação); codificar e dividir bacias hidrográficas a partir do Modelo Digital de Elevação (MDE); gerar banco de dados: organizar matrizes e tabelas para consultas. A validação cruzada da interpolação apresentou um EMA (Erro Médio Absoluto) que variou entre 1,02 e 3,20 mm, enquanto o EMQ (Erro Médio Quadrático) variou entre 6,4 e 8,4 mm. A disponibilização desse banco de dados na internet, com um arquivo de saída compatível com a maioria dos softwares de SIG, representa um ganho importante em pesquisas que necessitem utilizar longas séries temporais.","PeriodicalId":38345,"journal":{"name":"Revista Brasileira de Meteorologia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Banco de Dados Espacial de Precipitação do Estado do Rio Grande do Sul\",\"authors\":\"João Paulo Brubacher, Guilherme Garcia de Oliveira, Laurindo Antonio Guasselli\",\"doi\":\"10.1590/0102-77863630009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resumo Atualmente, ao obter séries históricas de precipitação, é necessário realizar o preenchimento de falhas, interpolar e estimar a precipitação para área de interesse, principalmente em locais com baixa densidade de estações pluviométricas. Então, este estudo teve como objetivo gerar um banco de dados espacial com séries históricas de precipitação para o estado do Rio Grande do Sul, que permita a consulta a índices de precipitação por bacia, por município e por coordenadas geográficas, sem a necessidade de pós-processamento. A metodologia foi estruturada em cinco etapas: adquirir, organizar e preencher falhas das séries históricas de precipitação; interpolar, por meio do método Inverso da Potência da Distância (IPD), dados de chuva para uma malha regular com resolução espacial de 20 km; calcular índices de precipitação (Tempo de Retorno, Chuva Média Mensal e Anual, índice de Anomalia de Chuvas (IAC), Número de dias de Precipitação); codificar e dividir bacias hidrográficas a partir do Modelo Digital de Elevação (MDE); gerar banco de dados: organizar matrizes e tabelas para consultas. A validação cruzada da interpolação apresentou um EMA (Erro Médio Absoluto) que variou entre 1,02 e 3,20 mm, enquanto o EMQ (Erro Médio Quadrático) variou entre 6,4 e 8,4 mm. A disponibilização desse banco de dados na internet, com um arquivo de saída compatível com a maioria dos softwares de SIG, representa um ganho importante em pesquisas que necessitem utilizar longas séries temporais.\",\"PeriodicalId\":38345,\"journal\":{\"name\":\"Revista Brasileira de Meteorologia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Meteorologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/0102-77863630009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Meteorologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/0102-77863630009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Banco de Dados Espacial de Precipitação do Estado do Rio Grande do Sul
Resumo Atualmente, ao obter séries históricas de precipitação, é necessário realizar o preenchimento de falhas, interpolar e estimar a precipitação para área de interesse, principalmente em locais com baixa densidade de estações pluviométricas. Então, este estudo teve como objetivo gerar um banco de dados espacial com séries históricas de precipitação para o estado do Rio Grande do Sul, que permita a consulta a índices de precipitação por bacia, por município e por coordenadas geográficas, sem a necessidade de pós-processamento. A metodologia foi estruturada em cinco etapas: adquirir, organizar e preencher falhas das séries históricas de precipitação; interpolar, por meio do método Inverso da Potência da Distância (IPD), dados de chuva para uma malha regular com resolução espacial de 20 km; calcular índices de precipitação (Tempo de Retorno, Chuva Média Mensal e Anual, índice de Anomalia de Chuvas (IAC), Número de dias de Precipitação); codificar e dividir bacias hidrográficas a partir do Modelo Digital de Elevação (MDE); gerar banco de dados: organizar matrizes e tabelas para consultas. A validação cruzada da interpolação apresentou um EMA (Erro Médio Absoluto) que variou entre 1,02 e 3,20 mm, enquanto o EMQ (Erro Médio Quadrático) variou entre 6,4 e 8,4 mm. A disponibilização desse banco de dados na internet, com um arquivo de saída compatível com a maioria dos softwares de SIG, representa um ganho importante em pesquisas que necessitem utilizar longas séries temporais.