{"title":"芳香乙基(乙基)黄原酸盐作为高分子材料稳定剂的合成与研究","authors":"Tanzila Akchurina, Sabira Sardarova, Khuraman Efendiyeva, Irada Eyvazova, Vagif Farzaliyev, Afsun Sujayev","doi":"10.1007/s13203-021-00281-z","DOIUrl":null,"url":null,"abstract":"<div><p>The number of aroylethyl (ethyl)xanthates have been synthesized by the reaction of the exchange decomposition of β-dimethylaminopropiophenone hydrochlorides with potassium xanthate containing several functional groups (C=O, C=S, C–OH), which determine the use of these xanthates as stabilizers with internal synergy to polymeric materials. It was shown that the thermal stability of the compounds, depending on the nature of the substituent in the benzene ring of the molecule was observed in the temperature range of 149–196 °C. It was revealed that aroylethyl(ethyl)xanthates had a stabilizing effect due to the suppression of thermo-oxidative destruction of polyethylene; they increased the induction period of polyethylene oxidation by 2–6 times, and the oxidation rate was reduced by about 3–9 times. Among the studied compounds, 4-hydroxybenzoylethyl (ethyl)xanthate had the greatest stabilizing effect. The study of the mechanism of the stabilizing action of the compounds showed that xanthates react with cumene hydroperoxide (CHP), which proceeded through the stage of formation of an intermediate product that actively decomposed CHP, i.e., the oxidation chain was terminated by the decomposition of the CHP not by the initial xanthates but by their transformation products.</p></div>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"11 3","pages":"327 - 333"},"PeriodicalIF":0.1250,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13203-021-00281-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Synthesis and study of aroylethyl(ethyl)-xanthates as stabilizers of polymeric materials\",\"authors\":\"Tanzila Akchurina, Sabira Sardarova, Khuraman Efendiyeva, Irada Eyvazova, Vagif Farzaliyev, Afsun Sujayev\",\"doi\":\"10.1007/s13203-021-00281-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The number of aroylethyl (ethyl)xanthates have been synthesized by the reaction of the exchange decomposition of β-dimethylaminopropiophenone hydrochlorides with potassium xanthate containing several functional groups (C=O, C=S, C–OH), which determine the use of these xanthates as stabilizers with internal synergy to polymeric materials. It was shown that the thermal stability of the compounds, depending on the nature of the substituent in the benzene ring of the molecule was observed in the temperature range of 149–196 °C. It was revealed that aroylethyl(ethyl)xanthates had a stabilizing effect due to the suppression of thermo-oxidative destruction of polyethylene; they increased the induction period of polyethylene oxidation by 2–6 times, and the oxidation rate was reduced by about 3–9 times. Among the studied compounds, 4-hydroxybenzoylethyl (ethyl)xanthate had the greatest stabilizing effect. The study of the mechanism of the stabilizing action of the compounds showed that xanthates react with cumene hydroperoxide (CHP), which proceeded through the stage of formation of an intermediate product that actively decomposed CHP, i.e., the oxidation chain was terminated by the decomposition of the CHP not by the initial xanthates but by their transformation products.</p></div>\",\"PeriodicalId\":472,\"journal\":{\"name\":\"Applied Petrochemical Research\",\"volume\":\"11 3\",\"pages\":\"327 - 333\"},\"PeriodicalIF\":0.1250,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13203-021-00281-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Petrochemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13203-021-00281-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-021-00281-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
用含几个官能团(C=O, C=S, C - oh)的黄药钾与盐酸β-二甲氨基丙烯酮交换分解反应合成了一些芳基乙基(乙基)黄药,决定了这些黄药作为稳定剂对高分子材料具有内协同作用。结果表明,在149 ~ 196℃的温度范围内,化合物的热稳定性取决于分子苯环上取代基的性质。结果表明,芳香乙基(乙基)黄原药对聚乙烯的热氧化破坏具有抑制作用;他们将聚乙烯的氧化诱导期提高了2-6倍,氧化速率降低了约3-9倍。其中,4-羟基苯甲酰乙基(乙基)黄药的稳定作用最大。对化合物稳定作用机理的研究表明,黄原酸与过氧化氢异丙苯(CHP)发生反应,经过中间产物的生成阶段,CHP被积极分解,即氧化链被CHP分解而终止,而不是被初始黄原酸分解,而是被其转化产物分解。
Synthesis and study of aroylethyl(ethyl)-xanthates as stabilizers of polymeric materials
The number of aroylethyl (ethyl)xanthates have been synthesized by the reaction of the exchange decomposition of β-dimethylaminopropiophenone hydrochlorides with potassium xanthate containing several functional groups (C=O, C=S, C–OH), which determine the use of these xanthates as stabilizers with internal synergy to polymeric materials. It was shown that the thermal stability of the compounds, depending on the nature of the substituent in the benzene ring of the molecule was observed in the temperature range of 149–196 °C. It was revealed that aroylethyl(ethyl)xanthates had a stabilizing effect due to the suppression of thermo-oxidative destruction of polyethylene; they increased the induction period of polyethylene oxidation by 2–6 times, and the oxidation rate was reduced by about 3–9 times. Among the studied compounds, 4-hydroxybenzoylethyl (ethyl)xanthate had the greatest stabilizing effect. The study of the mechanism of the stabilizing action of the compounds showed that xanthates react with cumene hydroperoxide (CHP), which proceeded through the stage of formation of an intermediate product that actively decomposed CHP, i.e., the oxidation chain was terminated by the decomposition of the CHP not by the initial xanthates but by their transformation products.
期刊介绍:
Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.