Jismy Antony, V. Meera, Vinod P. Raphael, P. Vinod
{"title":"纳米零价铁的碳酸钙易包封:合成、表征及其在铁修复中的应用","authors":"Jismy Antony, V. Meera, Vinod P. Raphael, P. Vinod","doi":"10.1007/s40201-022-00831-0","DOIUrl":null,"url":null,"abstract":"<p>In this study, CaCO<sub>3</sub> was used as a modifier for nano zero-valent iron (nZVI) surface to prevent rapid aggregation and effectively utilized for iron remediation from aqueous solution. Surface chemistry and morphology of CaCO<sub>3</sub> encapsulated nZVI (CaCO<sub>3</sub>–nZVI) before and after treatment of contaminant iron solution were characterized by scanning electron microscopy–energy dispersive X-ray (SEM–EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The mechanisms of surface modification as well as iron remediation were well depicted with the help of these characterisation tools. Iron removal efficacy of 96.4% was achieved with 0.25 g/L adsorbent dose for an influent iron of 0.5 mg/L at pH 10 after a 3 h treatment process. When the influent concentration was increased to 10 mg/L, the removal capacity decreased to 92.1%. The study demonstrates that CaCO<sub>3</sub> and nZVI in the encapsulated nanoparticle have a significant synergistic effect. The pseudo-second- order reaction kinetics and Freundlich isotherm model correctly portrayed the experimental data for iron removal by CaCO<sub>3</sub>–nZVI. The CaCO<sub>3</sub>–nZVI is a viable option for iron removal from various aqueous media due to its facile preparation, high iron removal capability, and reusability.</p>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"20 2","pages":"915 - 930"},"PeriodicalIF":3.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40201-022-00831-0.pdf","citationCount":"2","resultStr":"{\"title\":\"Facile encapsulation of nano zero-valent iron with calcium carbonate: synthesis, characterization and application for iron remediation\",\"authors\":\"Jismy Antony, V. Meera, Vinod P. Raphael, P. Vinod\",\"doi\":\"10.1007/s40201-022-00831-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, CaCO<sub>3</sub> was used as a modifier for nano zero-valent iron (nZVI) surface to prevent rapid aggregation and effectively utilized for iron remediation from aqueous solution. Surface chemistry and morphology of CaCO<sub>3</sub> encapsulated nZVI (CaCO<sub>3</sub>–nZVI) before and after treatment of contaminant iron solution were characterized by scanning electron microscopy–energy dispersive X-ray (SEM–EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The mechanisms of surface modification as well as iron remediation were well depicted with the help of these characterisation tools. Iron removal efficacy of 96.4% was achieved with 0.25 g/L adsorbent dose for an influent iron of 0.5 mg/L at pH 10 after a 3 h treatment process. When the influent concentration was increased to 10 mg/L, the removal capacity decreased to 92.1%. The study demonstrates that CaCO<sub>3</sub> and nZVI in the encapsulated nanoparticle have a significant synergistic effect. The pseudo-second- order reaction kinetics and Freundlich isotherm model correctly portrayed the experimental data for iron removal by CaCO<sub>3</sub>–nZVI. The CaCO<sub>3</sub>–nZVI is a viable option for iron removal from various aqueous media due to its facile preparation, high iron removal capability, and reusability.</p>\",\"PeriodicalId\":628,\"journal\":{\"name\":\"Journal of Environmental Health Science and Engineering\",\"volume\":\"20 2\",\"pages\":\"915 - 930\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40201-022-00831-0.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Health Science and Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40201-022-00831-0\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Health Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40201-022-00831-0","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Facile encapsulation of nano zero-valent iron with calcium carbonate: synthesis, characterization and application for iron remediation
In this study, CaCO3 was used as a modifier for nano zero-valent iron (nZVI) surface to prevent rapid aggregation and effectively utilized for iron remediation from aqueous solution. Surface chemistry and morphology of CaCO3 encapsulated nZVI (CaCO3–nZVI) before and after treatment of contaminant iron solution were characterized by scanning electron microscopy–energy dispersive X-ray (SEM–EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The mechanisms of surface modification as well as iron remediation were well depicted with the help of these characterisation tools. Iron removal efficacy of 96.4% was achieved with 0.25 g/L adsorbent dose for an influent iron of 0.5 mg/L at pH 10 after a 3 h treatment process. When the influent concentration was increased to 10 mg/L, the removal capacity decreased to 92.1%. The study demonstrates that CaCO3 and nZVI in the encapsulated nanoparticle have a significant synergistic effect. The pseudo-second- order reaction kinetics and Freundlich isotherm model correctly portrayed the experimental data for iron removal by CaCO3–nZVI. The CaCO3–nZVI is a viable option for iron removal from various aqueous media due to its facile preparation, high iron removal capability, and reusability.
期刊介绍:
Journal of Environmental Health Science & Engineering is a peer-reviewed journal presenting timely research on all aspects of environmental health science, engineering and management.
A broad outline of the journal''s scope includes:
-Water pollution and treatment
-Wastewater treatment and reuse
-Air control
-Soil remediation
-Noise and radiation control
-Environmental biotechnology and nanotechnology
-Food safety and hygiene