基于深度学习分类器的物联网苹果树叶病分类优化

IF 0.8 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Image and Graphics Pub Date : 2023-08-03 DOI:10.1142/s0219467825500159
K. Sameera, P. Swarnalatha
{"title":"基于深度学习分类器的物联网苹果树叶病分类优化","authors":"K. Sameera, P. Swarnalatha","doi":"10.1142/s0219467825500159","DOIUrl":null,"url":null,"abstract":"The development of any country is influenced by the growth in the agriculture sector. The prevalence of pests and diseases in plants affects the productivity of any agricultural product. Early diagnosis of the disease can substantially decrease the effort and the fund required for disease management. The Internet of Things (IoT) provides a framework for offering solutions for automatic farming. This paper devises an automated detection technique for foliar disease classification in apple trees using an IoT network. Here, classification is performed using a hybrid classifier, which utilizes the Deep Residual Network (DRN) and Deep [Formula: see text] Network (DQN). A new Adaptive Tunicate Swarm Sine–Cosine Algorithm (TSSCA) is used for modifying the learning parameters as well as the weights of the proposed hybrid classifier. The TSSCA is developed by adaptively changing the navigation foraging behavior of the tunicates obtained from the Tunicate Swarm Algorithm (TSA) in accordance with the Sine–Cosine Algorithm  (SCA). The outputs obtained from the Adaptive TSSCA-based DRN and Adaptive TSSCA-based DQN are merged using cosine similarity measure for detecting the foliar disease. The Plant Pathology 2020 — FGVC7 dataset is utilized for the experimental process to determine accuracy, sensitivity, specificity and energy and we achieved the values of 98.36%, 98.58%, 96.32% and 0.413 J, respectively.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization with Deep Learning Classifier-Based Foliar Disease Classification in Apple Trees Using IoT Network\",\"authors\":\"K. Sameera, P. Swarnalatha\",\"doi\":\"10.1142/s0219467825500159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of any country is influenced by the growth in the agriculture sector. The prevalence of pests and diseases in plants affects the productivity of any agricultural product. Early diagnosis of the disease can substantially decrease the effort and the fund required for disease management. The Internet of Things (IoT) provides a framework for offering solutions for automatic farming. This paper devises an automated detection technique for foliar disease classification in apple trees using an IoT network. Here, classification is performed using a hybrid classifier, which utilizes the Deep Residual Network (DRN) and Deep [Formula: see text] Network (DQN). A new Adaptive Tunicate Swarm Sine–Cosine Algorithm (TSSCA) is used for modifying the learning parameters as well as the weights of the proposed hybrid classifier. The TSSCA is developed by adaptively changing the navigation foraging behavior of the tunicates obtained from the Tunicate Swarm Algorithm (TSA) in accordance with the Sine–Cosine Algorithm  (SCA). The outputs obtained from the Adaptive TSSCA-based DRN and Adaptive TSSCA-based DQN are merged using cosine similarity measure for detecting the foliar disease. The Plant Pathology 2020 — FGVC7 dataset is utilized for the experimental process to determine accuracy, sensitivity, specificity and energy and we achieved the values of 98.36%, 98.58%, 96.32% and 0.413 J, respectively.\",\"PeriodicalId\":44688,\"journal\":{\"name\":\"International Journal of Image and Graphics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219467825500159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467825500159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

任何国家的发展都受到农业部门增长的影响。植物病虫害的流行影响着任何农产品的生产力。疾病的早期诊断可以大大减少疾病管理所需的努力和资金。物联网(IoT)为提供自动化农业解决方案提供了一个框架。本文设计了一种基于物联网网络的苹果树叶面病害分类自动检测技术。在这里,使用混合分类器进行分类,该分类器利用了深度残差网络(DRN)和深度[公式:见文本]网络(DQN)。采用一种新的自适应束状虫群正弦余弦算法(TSSCA)来修改混合分类器的学习参数和权重。TSSCA是根据正弦余弦算法(SCA)自适应改变由被囊动物群算法(TSA)得到的被囊动物的导航觅食行为而发展起来的。将基于自适应tssca的DRN和基于自适应tssca的DQN的输出用余弦相似度度量合并,用于叶面病害检测。实验过程使用Plant Pathology 2020 - FGVC7数据集来确定准确性、灵敏度、特异性和能量,我们分别获得了98.36%、98.58%、96.32%和0.413 J的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization with Deep Learning Classifier-Based Foliar Disease Classification in Apple Trees Using IoT Network
The development of any country is influenced by the growth in the agriculture sector. The prevalence of pests and diseases in plants affects the productivity of any agricultural product. Early diagnosis of the disease can substantially decrease the effort and the fund required for disease management. The Internet of Things (IoT) provides a framework for offering solutions for automatic farming. This paper devises an automated detection technique for foliar disease classification in apple trees using an IoT network. Here, classification is performed using a hybrid classifier, which utilizes the Deep Residual Network (DRN) and Deep [Formula: see text] Network (DQN). A new Adaptive Tunicate Swarm Sine–Cosine Algorithm (TSSCA) is used for modifying the learning parameters as well as the weights of the proposed hybrid classifier. The TSSCA is developed by adaptively changing the navigation foraging behavior of the tunicates obtained from the Tunicate Swarm Algorithm (TSA) in accordance with the Sine–Cosine Algorithm  (SCA). The outputs obtained from the Adaptive TSSCA-based DRN and Adaptive TSSCA-based DQN are merged using cosine similarity measure for detecting the foliar disease. The Plant Pathology 2020 — FGVC7 dataset is utilized for the experimental process to determine accuracy, sensitivity, specificity and energy and we achieved the values of 98.36%, 98.58%, 96.32% and 0.413 J, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Image and Graphics
International Journal of Image and Graphics COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
18.80%
发文量
67
期刊最新文献
Design and Implementation of Novel Hybrid and Multiscale- Assisted CNN and ResNet Using Heuristic Advancement of Adaptive Deep Segmentation for Iris Recognition Dwarf Mongoose Optimization with Transfer Learning-Based Fish Behavior Classification Model MRCNet: Multi-Level Residual Connectivity Network for Image Classification Feature Matching-Based Undersea Panoramic Image Stitching in VR Animation Multi-disease Classification of Mango Tree Using Meta-heuristic-based Weighted Feature Selection and LSTM Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1