{"title":"电阻加热,高压,膜和螺旋驱动金刚石砧细胞","authors":"M. Santoro, Ahmed Hajeb, F. Gorelli","doi":"10.1080/08957959.2020.1789619","DOIUrl":null,"url":null,"abstract":"ABSTRACT High temperature is of paramount importance in high pressure science. One of the leading tools in this respect is the resistively heated diamond anvil cell (DAC), where the heat is provided by small heaters, positioned close to the diamond/gasket/sample region (internally heated DAC, IHDAC) or by wrapping the DAC body into bigger heaters (externally heated DAC, EHDAC). Although IHDACs can reach sample temperatures higher than 1000 K, they are difficult to handle and the heater/diamond/gasket/sample region may be affected by strong thermal gradients potentially hindering accurate temperature measurements. Here we present a novel EHDAC, which overcomes these issues by uniquely joining: (i) high mechanical precision for multi-Mbar, (ii) high temperature alloys for operating to 1000 K, (iii) membrane or screw driven, easily switchable between each other, (iv) operation into a vacuum chamber, (v) uniform temperature, (vi) facile handling, and (vii) possibility to add internal heaters for achieving even higher temperatures.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"40 1","pages":"379 - 391"},"PeriodicalIF":1.2000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08957959.2020.1789619","citationCount":"6","resultStr":"{\"title\":\"Resistively heated, high pressure, membrane and screw driven diamond anvil cell\",\"authors\":\"M. Santoro, Ahmed Hajeb, F. Gorelli\",\"doi\":\"10.1080/08957959.2020.1789619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT High temperature is of paramount importance in high pressure science. One of the leading tools in this respect is the resistively heated diamond anvil cell (DAC), where the heat is provided by small heaters, positioned close to the diamond/gasket/sample region (internally heated DAC, IHDAC) or by wrapping the DAC body into bigger heaters (externally heated DAC, EHDAC). Although IHDACs can reach sample temperatures higher than 1000 K, they are difficult to handle and the heater/diamond/gasket/sample region may be affected by strong thermal gradients potentially hindering accurate temperature measurements. Here we present a novel EHDAC, which overcomes these issues by uniquely joining: (i) high mechanical precision for multi-Mbar, (ii) high temperature alloys for operating to 1000 K, (iii) membrane or screw driven, easily switchable between each other, (iv) operation into a vacuum chamber, (v) uniform temperature, (vi) facile handling, and (vii) possibility to add internal heaters for achieving even higher temperatures.\",\"PeriodicalId\":12864,\"journal\":{\"name\":\"High Pressure Research\",\"volume\":\"40 1\",\"pages\":\"379 - 391\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/08957959.2020.1789619\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Pressure Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/08957959.2020.1789619\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Pressure Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/08957959.2020.1789619","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Resistively heated, high pressure, membrane and screw driven diamond anvil cell
ABSTRACT High temperature is of paramount importance in high pressure science. One of the leading tools in this respect is the resistively heated diamond anvil cell (DAC), where the heat is provided by small heaters, positioned close to the diamond/gasket/sample region (internally heated DAC, IHDAC) or by wrapping the DAC body into bigger heaters (externally heated DAC, EHDAC). Although IHDACs can reach sample temperatures higher than 1000 K, they are difficult to handle and the heater/diamond/gasket/sample region may be affected by strong thermal gradients potentially hindering accurate temperature measurements. Here we present a novel EHDAC, which overcomes these issues by uniquely joining: (i) high mechanical precision for multi-Mbar, (ii) high temperature alloys for operating to 1000 K, (iii) membrane or screw driven, easily switchable between each other, (iv) operation into a vacuum chamber, (v) uniform temperature, (vi) facile handling, and (vii) possibility to add internal heaters for achieving even higher temperatures.
期刊介绍:
High Pressure Research is the leading journal for research in high pressure science and technology. The journal publishes original full-length papers and short research reports of new developments, as well as timely review articles. It provides an important forum for the presentation of experimental and theoretical advances in high pressure science in subjects such as:
condensed matter physics and chemistry
geophysics and planetary physics
synthesis of new materials
chemical kinetics under high pressure
industrial applications
shockwaves in condensed matter
instrumentation and techniques
the application of pressure to food / biomaterials
Theoretical papers of exceptionally high quality are also accepted.