Si-Liang Zhao, Shaogang Liu, Bo Qiu, Zhou Hong, Dan Zhao, Liqiang Dong
{"title":"基于VMD和SVM的充液管道泄漏检测方法","authors":"Si-Liang Zhao, Shaogang Liu, Bo Qiu, Zhou Hong, Dan Zhao, Liqiang Dong","doi":"10.1080/1573062X.2023.2251952","DOIUrl":null,"url":null,"abstract":"ABSTRACT In order to solve the problem of inconspicuous leakage signal characteristics under external noise interference, a leakage detection method based on the combination of variational modal decomposition (VMD) and support vector machine (SVM) is proposed. The method first calculates the spearman correlation coefficients (SCC) of multiple intrinsic modal components (IMFs) obtained by VMD with the source signal, then extracts the energy and central frequency features of IMFs with larger SCC, and finally performs leak detection using the SVM classifier. The experimental results show that the VMD-SVM method can effectively perform leak detection with an accuracy of 98.27%. The accuracy of the VMD-SVM method proposed in this paper is improved by 6.5%, 5.63% and 10.39% compared to the time-frequency (TF) feature SVM, empirical modal decomposition (EMD) feature SVM and wavelet (DWT) feature SVM, methods, respectively. In addition, feature sensitivities are analyzed to reduce model complexity while ensuring accuracy.","PeriodicalId":49392,"journal":{"name":"Urban Water Journal","volume":"20 1","pages":"1169 - 1182"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Leak detection method of liquid-filled pipeline based on VMD and SVM\",\"authors\":\"Si-Liang Zhao, Shaogang Liu, Bo Qiu, Zhou Hong, Dan Zhao, Liqiang Dong\",\"doi\":\"10.1080/1573062X.2023.2251952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In order to solve the problem of inconspicuous leakage signal characteristics under external noise interference, a leakage detection method based on the combination of variational modal decomposition (VMD) and support vector machine (SVM) is proposed. The method first calculates the spearman correlation coefficients (SCC) of multiple intrinsic modal components (IMFs) obtained by VMD with the source signal, then extracts the energy and central frequency features of IMFs with larger SCC, and finally performs leak detection using the SVM classifier. The experimental results show that the VMD-SVM method can effectively perform leak detection with an accuracy of 98.27%. The accuracy of the VMD-SVM method proposed in this paper is improved by 6.5%, 5.63% and 10.39% compared to the time-frequency (TF) feature SVM, empirical modal decomposition (EMD) feature SVM and wavelet (DWT) feature SVM, methods, respectively. In addition, feature sensitivities are analyzed to reduce model complexity while ensuring accuracy.\",\"PeriodicalId\":49392,\"journal\":{\"name\":\"Urban Water Journal\",\"volume\":\"20 1\",\"pages\":\"1169 - 1182\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Water Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1573062X.2023.2251952\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Water Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1573062X.2023.2251952","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Leak detection method of liquid-filled pipeline based on VMD and SVM
ABSTRACT In order to solve the problem of inconspicuous leakage signal characteristics under external noise interference, a leakage detection method based on the combination of variational modal decomposition (VMD) and support vector machine (SVM) is proposed. The method first calculates the spearman correlation coefficients (SCC) of multiple intrinsic modal components (IMFs) obtained by VMD with the source signal, then extracts the energy and central frequency features of IMFs with larger SCC, and finally performs leak detection using the SVM classifier. The experimental results show that the VMD-SVM method can effectively perform leak detection with an accuracy of 98.27%. The accuracy of the VMD-SVM method proposed in this paper is improved by 6.5%, 5.63% and 10.39% compared to the time-frequency (TF) feature SVM, empirical modal decomposition (EMD) feature SVM and wavelet (DWT) feature SVM, methods, respectively. In addition, feature sensitivities are analyzed to reduce model complexity while ensuring accuracy.
期刊介绍:
Urban Water Journal provides a forum for the research and professional communities dealing with water systems in the urban environment, directly contributing to the furtherance of sustainable development. Particular emphasis is placed on the analysis of interrelationships and interactions between the individual water systems, urban water bodies and the wider environment. The Journal encourages the adoption of an integrated approach, and system''s thinking to solve the numerous problems associated with sustainable urban water management.
Urban Water Journal focuses on the water-related infrastructure in the city: namely potable water supply, treatment and distribution; wastewater collection, treatment and management, and environmental return; storm drainage and urban flood management. Specific topics of interest include:
network design, optimisation, management, operation and rehabilitation;
novel treatment processes for water and wastewater, resource recovery, treatment plant design and optimisation as well as treatment plants as part of the integrated urban water system;
demand management and water efficiency, water recycling and source control;
stormwater management, urban flood risk quantification and management;
monitoring, utilisation and management of urban water bodies including groundwater;
water-sensitive planning and design (including analysis of interactions of the urban water cycle with city planning and green infrastructure);
resilience of the urban water system, long term scenarios to manage uncertainty, system stress testing;
data needs, smart metering and sensors, advanced data analytics for knowledge discovery, quantification and management of uncertainty, smart technologies for urban water systems;
decision-support and informatic tools;...