无人机三维点云岩石不连续性方位的球形数据验证

IF 0.6 4区 地球科学 Q4 GEOSCIENCES, MULTIDISCIPLINARY Revista Mexicana De Ciencias Geologicas Pub Date : 2021-11-24 DOI:10.22201/cgeo.20072902e.2021.3.1641
J. Mancera-Alejandrez, Sergio Macías-Medrano, Enrique Villarreal-Rubio, Darío Solano-Rojas
{"title":"无人机三维点云岩石不连续性方位的球形数据验证","authors":"J. Mancera-Alejandrez, Sergio Macías-Medrano, Enrique Villarreal-Rubio, Darío Solano-Rojas","doi":"10.22201/cgeo.20072902e.2021.3.1641","DOIUrl":null,"url":null,"abstract":"This work presents a methodology for the statistical validation of discontinuity surfaces obtained from point clouds using digital photogrammetry from drones. Our methodology allows you to review the quality of the data obtained with photogrammetry and decide whether these measurements are representative of the discontinuity surfaces that they analyze. It consists of three steps, the first one being a shape analysis that allows defining which statistical model should be used: Fisher for circularly symmetric clusters or Bingham fits better for axially symmetric clusters. This step also makes the most significant difference to other works since our methodology starts from the premise that not all discontinuity surfaces are flat. Therefore, Fisher parameters do not allow validating data that do not correspond to a plane. \nIn the second step of the methodology, we calculate the consistency parameters that depend on the statistical model defined in step 1. The parameters are similar for both models; both estimate κ which indicates how much the sample is concentrated around the mean orientation and validates the existence of this and which is the value of the generating angle of a cone with a 95 % confidence limit that it contains within the mean orientation. \nFinally, step 3 is used when there are control measurements to compare the point cloud data and define if both samples characterize the same discontinuity surface in the rock mass. \nThe results obtained on a rock outcrop allowed us to observe that the measurements obtained from the drone faithfully represent the discontinuity surface analyzed when these were compared with the measurements made manually with the compass. Furthermore, the dispersion parameters (","PeriodicalId":49601,"journal":{"name":"Revista Mexicana De Ciencias Geologicas","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spherical data validation of rock discontinuities orientation from Drone-derived 3D Point Clouds\",\"authors\":\"J. Mancera-Alejandrez, Sergio Macías-Medrano, Enrique Villarreal-Rubio, Darío Solano-Rojas\",\"doi\":\"10.22201/cgeo.20072902e.2021.3.1641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a methodology for the statistical validation of discontinuity surfaces obtained from point clouds using digital photogrammetry from drones. Our methodology allows you to review the quality of the data obtained with photogrammetry and decide whether these measurements are representative of the discontinuity surfaces that they analyze. It consists of three steps, the first one being a shape analysis that allows defining which statistical model should be used: Fisher for circularly symmetric clusters or Bingham fits better for axially symmetric clusters. This step also makes the most significant difference to other works since our methodology starts from the premise that not all discontinuity surfaces are flat. Therefore, Fisher parameters do not allow validating data that do not correspond to a plane. \\nIn the second step of the methodology, we calculate the consistency parameters that depend on the statistical model defined in step 1. The parameters are similar for both models; both estimate κ which indicates how much the sample is concentrated around the mean orientation and validates the existence of this and which is the value of the generating angle of a cone with a 95 % confidence limit that it contains within the mean orientation. \\nFinally, step 3 is used when there are control measurements to compare the point cloud data and define if both samples characterize the same discontinuity surface in the rock mass. \\nThe results obtained on a rock outcrop allowed us to observe that the measurements obtained from the drone faithfully represent the discontinuity surface analyzed when these were compared with the measurements made manually with the compass. Furthermore, the dispersion parameters (\",\"PeriodicalId\":49601,\"journal\":{\"name\":\"Revista Mexicana De Ciencias Geologicas\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Mexicana De Ciencias Geologicas\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.22201/cgeo.20072902e.2021.3.1641\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana De Ciencias Geologicas","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.22201/cgeo.20072902e.2021.3.1641","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了一种使用无人机数字摄影测量从点云获得的不连续表面的统计验证方法。我们的方法允许您审查通过摄影测量获得的数据的质量,并决定这些测量是否代表他们分析的不连续表面。它由三个步骤组成,第一步是形状分析,允许定义应该使用哪种统计模型:Fisher更适合圆对称集群,而Bingham更适合轴对称集群。这一步也是与其他作品最显著的不同之处,因为我们的方法是从并非所有不连续表面都是平坦的前提开始的。因此,Fisher参数不允许验证不对应于平面的数据。在该方法的第二步中,我们计算依赖于步骤1中定义的统计模型的一致性参数。两个模型的参数相似;两者都估计κ,它表示样本集中在平均方向周围的程度,并验证了它的存在性,这是一个锥体的生成角的值,具有95%的置信限,它包含在平均方向内。最后,当有控制测量来比较点云数据并确定两个样本是否表征岩体中相同的不连续面时,使用步骤3。在岩石露头上获得的结果使我们能够观察到,从无人机获得的测量值忠实地代表了分析的不连续表面,当这些测量值与用指南针手动测量值进行比较时。此外,色散参数(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spherical data validation of rock discontinuities orientation from Drone-derived 3D Point Clouds
This work presents a methodology for the statistical validation of discontinuity surfaces obtained from point clouds using digital photogrammetry from drones. Our methodology allows you to review the quality of the data obtained with photogrammetry and decide whether these measurements are representative of the discontinuity surfaces that they analyze. It consists of three steps, the first one being a shape analysis that allows defining which statistical model should be used: Fisher for circularly symmetric clusters or Bingham fits better for axially symmetric clusters. This step also makes the most significant difference to other works since our methodology starts from the premise that not all discontinuity surfaces are flat. Therefore, Fisher parameters do not allow validating data that do not correspond to a plane. In the second step of the methodology, we calculate the consistency parameters that depend on the statistical model defined in step 1. The parameters are similar for both models; both estimate κ which indicates how much the sample is concentrated around the mean orientation and validates the existence of this and which is the value of the generating angle of a cone with a 95 % confidence limit that it contains within the mean orientation. Finally, step 3 is used when there are control measurements to compare the point cloud data and define if both samples characterize the same discontinuity surface in the rock mass. The results obtained on a rock outcrop allowed us to observe that the measurements obtained from the drone faithfully represent the discontinuity surface analyzed when these were compared with the measurements made manually with the compass. Furthermore, the dispersion parameters (
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Mexicana De Ciencias Geologicas
Revista Mexicana De Ciencias Geologicas 地学-地球科学综合
CiteScore
1.00
自引率
12.50%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Revista Mexicana de Ciencias Geológicas (RMCG) publishes original research papers on geological processes of broad interest, and particularly those dealing with regions of Latin America. The RMCG also publishes review papers on topics of current interest, and on the geology and tectonics of geological provinces of Latin America. Besides, it offers the opportunity for host editors to publish special thematic issues.
期刊最新文献
Geocronología U-Pb y geoquímica del vulcanismo de arco del Paleoceno de la Formación Tetelcingo en el área de Chilpancingo-Tixtla, Guerrero (sur de México) Depósitos de lahar en la subcuenca del Río Cutio, volcán Pico de Tancítaro, Michoacán, México Mapping the mineralogy in the Oxia Planum and Mawrth Vallis ExoMars landing sites – implications for aqueous alteration and paleoenvironmental evolution Assessment of contamination level of watercourses and streambed sediments downstream the Capillitas Mine, Catamarca, Argentina Primer reporte de una combustión lenta residual en el volcán Quinceo, Morelia, Michoacán (México)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1