新冠肺炎疫苗接种后确诊病例预测:基于统计和深度学习模型

Meejoung Kim
{"title":"新冠肺炎疫苗接种后确诊病例预测:基于统计和深度学习模型","authors":"Meejoung Kim","doi":"10.28991/SCIMEDJ-2021-0302-7","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze and predict the number of daily confirmed cases of coronavirus (COVID-19) based on two statistical models and a deep learning (DL) model; the autoregressive integrated moving average (ARIMA), the generalized autoregressive conditional heteroscedasticity (GARCH), and the stacked long short-term memory deep neural network (LSTM DNN). We find the orders of the statistical models by the autocorrelation function and the partial autocorrelation function, and the hyperparameters of the DL model, such as the numbers of LSTM cells and blocks of a cell, by the exhaustive search. Ten datasets are used in the experiment; nine countries and the world datasets, from Dec. 31, 2019, to Feb. 22, 2021, provided by the WHO. We investigate the effects of data size and vaccination on performance. Numerical results show that performance depends on the used data's dates and vaccination. It also shows that the prediction by the LSTM DNN is better than those of the two statistical models. Based on the experimental results, the percentage improvements of LSTM DNN are up to 88.54% (86.63%) and 90.15% (87.74%) compared to ARIMA and GARCH, respectively, in mean absolute error (root mean squared error). While the performances of ARIMA and GARCH are varying according to the datasets. The obtained results may provide a criterion for the performance ranges and prediction accuracy of the COVID-19 daily confirmed cases.Doi: 10.28991/SciMedJ-2021-0302-7 Full Text: PDF","PeriodicalId":74776,"journal":{"name":"SciMedicine journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Prediction of COVID-19 Confirmed Cases after Vaccination: Based on Statistical and Deep Learning Models\",\"authors\":\"Meejoung Kim\",\"doi\":\"10.28991/SCIMEDJ-2021-0302-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze and predict the number of daily confirmed cases of coronavirus (COVID-19) based on two statistical models and a deep learning (DL) model; the autoregressive integrated moving average (ARIMA), the generalized autoregressive conditional heteroscedasticity (GARCH), and the stacked long short-term memory deep neural network (LSTM DNN). We find the orders of the statistical models by the autocorrelation function and the partial autocorrelation function, and the hyperparameters of the DL model, such as the numbers of LSTM cells and blocks of a cell, by the exhaustive search. Ten datasets are used in the experiment; nine countries and the world datasets, from Dec. 31, 2019, to Feb. 22, 2021, provided by the WHO. We investigate the effects of data size and vaccination on performance. Numerical results show that performance depends on the used data's dates and vaccination. It also shows that the prediction by the LSTM DNN is better than those of the two statistical models. Based on the experimental results, the percentage improvements of LSTM DNN are up to 88.54% (86.63%) and 90.15% (87.74%) compared to ARIMA and GARCH, respectively, in mean absolute error (root mean squared error). While the performances of ARIMA and GARCH are varying according to the datasets. The obtained results may provide a criterion for the performance ranges and prediction accuracy of the COVID-19 daily confirmed cases.Doi: 10.28991/SciMedJ-2021-0302-7 Full Text: PDF\",\"PeriodicalId\":74776,\"journal\":{\"name\":\"SciMedicine journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SciMedicine journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28991/SCIMEDJ-2021-0302-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciMedicine journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/SCIMEDJ-2021-0302-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们基于两个统计模型和一个深度学习(DL)模型来分析和预测每日确诊的冠状病毒(新冠肺炎)病例数;自回归综合移动平均(ARIMA)、广义自回归条件异方差(GARCH)和堆叠长短期记忆深度神经网络(LSTM-DNN)。我们通过自相关函数和偏自相关函数找到统计模型的阶数,并通过穷举搜索找到DL模型的超参数,如LSTM细胞和细胞块的数量。实验中使用了10个数据集;世界卫生组织提供的2019年12月31日至2021年2月22日的9个国家和世界数据集。我们研究了数据大小和疫苗接种对性能的影响。数值结果表明,性能取决于所用数据的日期和疫苗接种情况。还表明,LSTM-DNN的预测效果优于两种统计模型。基于实验结果,与ARIMA和GARCH相比,LSTM DNN的平均绝对误差(均方根误差)分别提高了88.54%(86.63%)和90.15%(87.74%)。而ARIMA和GARCH的性能根据数据集的不同而不同。所获得的结果可以为新冠肺炎每日确诊病例的表现范围和预测准确性提供标准。Doi:10.28991/SciMedJ-2021-0302-7全文:PDF
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of COVID-19 Confirmed Cases after Vaccination: Based on Statistical and Deep Learning Models
In this paper, we analyze and predict the number of daily confirmed cases of coronavirus (COVID-19) based on two statistical models and a deep learning (DL) model; the autoregressive integrated moving average (ARIMA), the generalized autoregressive conditional heteroscedasticity (GARCH), and the stacked long short-term memory deep neural network (LSTM DNN). We find the orders of the statistical models by the autocorrelation function and the partial autocorrelation function, and the hyperparameters of the DL model, such as the numbers of LSTM cells and blocks of a cell, by the exhaustive search. Ten datasets are used in the experiment; nine countries and the world datasets, from Dec. 31, 2019, to Feb. 22, 2021, provided by the WHO. We investigate the effects of data size and vaccination on performance. Numerical results show that performance depends on the used data's dates and vaccination. It also shows that the prediction by the LSTM DNN is better than those of the two statistical models. Based on the experimental results, the percentage improvements of LSTM DNN are up to 88.54% (86.63%) and 90.15% (87.74%) compared to ARIMA and GARCH, respectively, in mean absolute error (root mean squared error). While the performances of ARIMA and GARCH are varying according to the datasets. The obtained results may provide a criterion for the performance ranges and prediction accuracy of the COVID-19 daily confirmed cases.Doi: 10.28991/SciMedJ-2021-0302-7 Full Text: PDF
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Comparative Study on Prediction of Survival Event of Heart Failure Patients Using Machine Learning and Statistical Algorithms Systematic Review on the Effects of Food on Mental Health via Gut Microbiome Giant Fungating Borderline Phyllodes Tumor of the Breast Community Preparedness, Acceptability, and Uptake of UTT Services in PHC Facilities Effect of Season on Blood Transfusion Patterns: A Retrospective Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1