{"title":"空间人居作业节约政策分析与优化分析模型","authors":"Andrew J. Maxwell, K. Ho","doi":"10.2514/1.a35679","DOIUrl":null,"url":null,"abstract":"The inclusion of operational sparing policies in early system definition can ensure that spares’ allocations can optimally meet desired system reliabilities consistent with the planned maintenance of a crewed vehicle. This approach is critical for long-duration crewed missions where mass allocations are constrained and lack of safe abort contingencies limit options in the event of significant system degradation, especially in the environmental control and life support systems. This paper presents an analytical model for analyzing and optimizing sparing policies as part of an overall evaluation of the probability of sufficiency for a system configuration. The repair transition parameters are varied to change the state visitation probabilities that drive a change in the probability of sufficiency observed for a given mass allocation. These parameters are optimized using a particle swarm optimizer to identify the preferred strategy for a desired allocation mass.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Model for Sparing Policy Analysis and Optimization for Space Habitat Operations\",\"authors\":\"Andrew J. Maxwell, K. Ho\",\"doi\":\"10.2514/1.a35679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The inclusion of operational sparing policies in early system definition can ensure that spares’ allocations can optimally meet desired system reliabilities consistent with the planned maintenance of a crewed vehicle. This approach is critical for long-duration crewed missions where mass allocations are constrained and lack of safe abort contingencies limit options in the event of significant system degradation, especially in the environmental control and life support systems. This paper presents an analytical model for analyzing and optimizing sparing policies as part of an overall evaluation of the probability of sufficiency for a system configuration. The repair transition parameters are varied to change the state visitation probabilities that drive a change in the probability of sufficiency observed for a given mass allocation. These parameters are optimized using a particle swarm optimizer to identify the preferred strategy for a desired allocation mass.\",\"PeriodicalId\":50048,\"journal\":{\"name\":\"Journal of Spacecraft and Rockets\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spacecraft and Rockets\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.a35679\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.a35679","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Analytical Model for Sparing Policy Analysis and Optimization for Space Habitat Operations
The inclusion of operational sparing policies in early system definition can ensure that spares’ allocations can optimally meet desired system reliabilities consistent with the planned maintenance of a crewed vehicle. This approach is critical for long-duration crewed missions where mass allocations are constrained and lack of safe abort contingencies limit options in the event of significant system degradation, especially in the environmental control and life support systems. This paper presents an analytical model for analyzing and optimizing sparing policies as part of an overall evaluation of the probability of sufficiency for a system configuration. The repair transition parameters are varied to change the state visitation probabilities that drive a change in the probability of sufficiency observed for a given mass allocation. These parameters are optimized using a particle swarm optimizer to identify the preferred strategy for a desired allocation mass.
期刊介绍:
This Journal, that started it all back in 1963, is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental result. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.