{"title":"局部多项式Hilbert加性回归","authors":"Jeong Min Jeon, Young K. Lee, E. Mammen, B. Park","doi":"10.3150/21-bej1410","DOIUrl":null,"url":null,"abstract":"Summary: In this paper a new additive regression technique is developed for response variables that take values in general Hilbert spaces. The proposed method is based on the idea of smooth backfitting that has been developed mainly for real-valued responses. The local polynomial smoothing device is adopted, which renders various advantages of the technique evidenced in the classical univariate kernel regression with real-valued responses. It is demonstrated that the new technique eliminates many limitations which existing methods are subject to. In contrast to the existing techniques, the proposed approach is equipped with the estimation of the derivatives as well as the regression function itself, and provides options to make the estimated regression function free from boundary effects and possess oracle properties. A comprehensive theory is presented for the proposed method, which includes the rates of convergence in various modes and the asymptotic distributions of the estimators. The efficiency of the proposed method is also demonstrated via simulation study and is illustrated through real data applications.","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Locally polynomial Hilbertian additive regression\",\"authors\":\"Jeong Min Jeon, Young K. Lee, E. Mammen, B. Park\",\"doi\":\"10.3150/21-bej1410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary: In this paper a new additive regression technique is developed for response variables that take values in general Hilbert spaces. The proposed method is based on the idea of smooth backfitting that has been developed mainly for real-valued responses. The local polynomial smoothing device is adopted, which renders various advantages of the technique evidenced in the classical univariate kernel regression with real-valued responses. It is demonstrated that the new technique eliminates many limitations which existing methods are subject to. In contrast to the existing techniques, the proposed approach is equipped with the estimation of the derivatives as well as the regression function itself, and provides options to make the estimated regression function free from boundary effects and possess oracle properties. A comprehensive theory is presented for the proposed method, which includes the rates of convergence in various modes and the asymptotic distributions of the estimators. The efficiency of the proposed method is also demonstrated via simulation study and is illustrated through real data applications.\",\"PeriodicalId\":55387,\"journal\":{\"name\":\"Bernoulli\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bernoulli\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3150/21-bej1410\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/21-bej1410","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Summary: In this paper a new additive regression technique is developed for response variables that take values in general Hilbert spaces. The proposed method is based on the idea of smooth backfitting that has been developed mainly for real-valued responses. The local polynomial smoothing device is adopted, which renders various advantages of the technique evidenced in the classical univariate kernel regression with real-valued responses. It is demonstrated that the new technique eliminates many limitations which existing methods are subject to. In contrast to the existing techniques, the proposed approach is equipped with the estimation of the derivatives as well as the regression function itself, and provides options to make the estimated regression function free from boundary effects and possess oracle properties. A comprehensive theory is presented for the proposed method, which includes the rates of convergence in various modes and the asymptotic distributions of the estimators. The efficiency of the proposed method is also demonstrated via simulation study and is illustrated through real data applications.
期刊介绍:
BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work.
BERNOULLI will publish:
Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed.
Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research:
Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments.
Scholarly written papers on some historical significant aspect of statistics and probability.