现代市场中的贸易信息化

IF 3.4 3区 经济学 Q1 BUSINESS, FINANCE Financial Analysts Journal Pub Date : 2022-11-04 DOI:10.1080/0015198X.2022.2126590
Samarpan Nawn, Gaurav Raizada
{"title":"现代市场中的贸易信息化","authors":"Samarpan Nawn, Gaurav Raizada","doi":"10.1080/0015198X.2022.2126590","DOIUrl":null,"url":null,"abstract":"Abstract Using transactions-based calendar time (TBCT) portfolio analysis, we investigate informativeness of trades of investor categories, namely institutions, proprietary traders, and retail clients. We find that trade informativeness is positive for institutional and negative for retail-client investors. The informativeness of liquidity-demanding trades are less than the informativeness of liquidity-supplying trades for all trading groups, over both long and short horizons. We also find that institutions are benefitted by algorithmic executions compared to manual executions and this benefit is elevated on days of high volume and volatility. Proprietary algorithmic traders (high-frequency traders) generate positive alpha for their trades only from their liquidity-supplying trades.","PeriodicalId":48062,"journal":{"name":"Financial Analysts Journal","volume":"79 1","pages":"77 - 98"},"PeriodicalIF":3.4000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trade Informativeness in Modern Markets\",\"authors\":\"Samarpan Nawn, Gaurav Raizada\",\"doi\":\"10.1080/0015198X.2022.2126590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Using transactions-based calendar time (TBCT) portfolio analysis, we investigate informativeness of trades of investor categories, namely institutions, proprietary traders, and retail clients. We find that trade informativeness is positive for institutional and negative for retail-client investors. The informativeness of liquidity-demanding trades are less than the informativeness of liquidity-supplying trades for all trading groups, over both long and short horizons. We also find that institutions are benefitted by algorithmic executions compared to manual executions and this benefit is elevated on days of high volume and volatility. Proprietary algorithmic traders (high-frequency traders) generate positive alpha for their trades only from their liquidity-supplying trades.\",\"PeriodicalId\":48062,\"journal\":{\"name\":\"Financial Analysts Journal\",\"volume\":\"79 1\",\"pages\":\"77 - 98\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Financial Analysts Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/0015198X.2022.2126590\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Analysts Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/0015198X.2022.2126590","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要利用基于交易的日历时间(TBCT)投资组合分析,研究了机构投资者、自营交易者和零售客户三类投资者的交易信息。我们发现,交易信息对机构投资者有利,对散户投资者不利。在所有交易组中,无论是长期还是短期,流动性需求交易的信息性都低于流动性供应交易的信息性。我们还发现,与手动执行相比,机构从算法执行中受益,并且在高交易量和波动性的日子里,这种好处会得到提升。专有算法交易者(高频交易者)仅通过提供流动性的交易才能为其交易产生正alpha。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trade Informativeness in Modern Markets
Abstract Using transactions-based calendar time (TBCT) portfolio analysis, we investigate informativeness of trades of investor categories, namely institutions, proprietary traders, and retail clients. We find that trade informativeness is positive for institutional and negative for retail-client investors. The informativeness of liquidity-demanding trades are less than the informativeness of liquidity-supplying trades for all trading groups, over both long and short horizons. We also find that institutions are benefitted by algorithmic executions compared to manual executions and this benefit is elevated on days of high volume and volatility. Proprietary algorithmic traders (high-frequency traders) generate positive alpha for their trades only from their liquidity-supplying trades.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Financial Analysts Journal
Financial Analysts Journal BUSINESS, FINANCE-
CiteScore
5.40
自引率
7.10%
发文量
31
期刊介绍: The Financial Analysts Journal aims to be the leading practitioner journal in the investment management community by advancing the knowledge and understanding of the practice of investment management through the publication of rigorous, peer-reviewed, practitioner-relevant research from leading academics and practitioners.
期刊最新文献
Choices Matter When Training Machine Learning Models for Return Prediction The Importance of Joining Lifecycle Models with Mean-Variance Optimization Transaction Costs and Capacity of Systematic Corporate Bond Strategies Predicting Corporate Bond Illiquidity via Machine Learning Nonlinear Factor Returns in the US Equity Market
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1