Siyabonga Aubrey Mhlongo, Linda Lunga Sibali, Peter Papoh Ndibewu
{"title":"聚醚砜聚合物膜去除废水中持久性有机污染物的合成、表征及改性研究","authors":"Siyabonga Aubrey Mhlongo, Linda Lunga Sibali, Peter Papoh Ndibewu","doi":"10.3103/S1063455X23040094","DOIUrl":null,"url":null,"abstract":"<p>The disposal of persistent organic pollutants (POPs) in water streams continues to be a challenge, where textile and pharmaceutical industries are major contributors to this global challenge. This review paper focuses on chemical and physical modification processes in place to successfully increase the performance of poly(ether)sulfone polymeric membranes with a much more improved hydrophilicity for the removal of POPs. This work is carried out for the effective and efficient removal of persistent organic pollutants in wastewater treatment plants. Poly(ether)sulfone remains the most preferred polymer in the synthesis and application of nano-filtration (NF) and ultra-filtration (UF) membranes. Using specific composition values, the phase inversion process is used for the distribution of additives or particles unto the membrane scaffold in order to fabricate the PES polymer. This tends to influence the polymer’s ideal chemical, mechanical and thermal stability. However, an observed high hydrophobicity is its main shortcoming, which frequently leads to the increased membrane fouling and flux. The performance of PES can however be improved by fabrication with suitable additives, and this automatically increases the hydrophilicity of the synthesized membrane. An approach in the PES modification differs in processes, (1) graft polymerization, where nano and micro particles are chemically imparted on the membrane scaffold; (2) plasma treatment, which uses chemical radicals and electronically excited particles, or gas under atmospheric pressure; and (3) physical pre-adsorption of hydrophilic components onto the membrane scaffold. Also, the bulk modification process was discussed further in this work as it seeks to bring a new approach in the modification process of PES membrane. This applies modification of the membrane materials before membrane synthesis by incorporating hydrophilic additives in the membrane matrix solution during the synthesis. Sulfonation and carboxylation techniques are discussed at the core of their mechanisms. In conclusion, polymer blending results in separation efficiencies being increased significantly and also resulting in improved surface characteristics.</p>","PeriodicalId":680,"journal":{"name":"Journal of Water Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Aspects of the Synthesis, Characterization and Modification of Poly(ether)sulfone Polymeric Membrane for Removal of Persistent Organic Pollutants in Wastewater Samples\",\"authors\":\"Siyabonga Aubrey Mhlongo, Linda Lunga Sibali, Peter Papoh Ndibewu\",\"doi\":\"10.3103/S1063455X23040094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The disposal of persistent organic pollutants (POPs) in water streams continues to be a challenge, where textile and pharmaceutical industries are major contributors to this global challenge. This review paper focuses on chemical and physical modification processes in place to successfully increase the performance of poly(ether)sulfone polymeric membranes with a much more improved hydrophilicity for the removal of POPs. This work is carried out for the effective and efficient removal of persistent organic pollutants in wastewater treatment plants. Poly(ether)sulfone remains the most preferred polymer in the synthesis and application of nano-filtration (NF) and ultra-filtration (UF) membranes. Using specific composition values, the phase inversion process is used for the distribution of additives or particles unto the membrane scaffold in order to fabricate the PES polymer. This tends to influence the polymer’s ideal chemical, mechanical and thermal stability. However, an observed high hydrophobicity is its main shortcoming, which frequently leads to the increased membrane fouling and flux. The performance of PES can however be improved by fabrication with suitable additives, and this automatically increases the hydrophilicity of the synthesized membrane. An approach in the PES modification differs in processes, (1) graft polymerization, where nano and micro particles are chemically imparted on the membrane scaffold; (2) plasma treatment, which uses chemical radicals and electronically excited particles, or gas under atmospheric pressure; and (3) physical pre-adsorption of hydrophilic components onto the membrane scaffold. Also, the bulk modification process was discussed further in this work as it seeks to bring a new approach in the modification process of PES membrane. This applies modification of the membrane materials before membrane synthesis by incorporating hydrophilic additives in the membrane matrix solution during the synthesis. Sulfonation and carboxylation techniques are discussed at the core of their mechanisms. In conclusion, polymer blending results in separation efficiencies being increased significantly and also resulting in improved surface characteristics.</p>\",\"PeriodicalId\":680,\"journal\":{\"name\":\"Journal of Water Chemistry and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Chemistry and Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1063455X23040094\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Chemistry and Technology","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.3103/S1063455X23040094","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Some Aspects of the Synthesis, Characterization and Modification of Poly(ether)sulfone Polymeric Membrane for Removal of Persistent Organic Pollutants in Wastewater Samples
The disposal of persistent organic pollutants (POPs) in water streams continues to be a challenge, where textile and pharmaceutical industries are major contributors to this global challenge. This review paper focuses on chemical and physical modification processes in place to successfully increase the performance of poly(ether)sulfone polymeric membranes with a much more improved hydrophilicity for the removal of POPs. This work is carried out for the effective and efficient removal of persistent organic pollutants in wastewater treatment plants. Poly(ether)sulfone remains the most preferred polymer in the synthesis and application of nano-filtration (NF) and ultra-filtration (UF) membranes. Using specific composition values, the phase inversion process is used for the distribution of additives or particles unto the membrane scaffold in order to fabricate the PES polymer. This tends to influence the polymer’s ideal chemical, mechanical and thermal stability. However, an observed high hydrophobicity is its main shortcoming, which frequently leads to the increased membrane fouling and flux. The performance of PES can however be improved by fabrication with suitable additives, and this automatically increases the hydrophilicity of the synthesized membrane. An approach in the PES modification differs in processes, (1) graft polymerization, where nano and micro particles are chemically imparted on the membrane scaffold; (2) plasma treatment, which uses chemical radicals and electronically excited particles, or gas under atmospheric pressure; and (3) physical pre-adsorption of hydrophilic components onto the membrane scaffold. Also, the bulk modification process was discussed further in this work as it seeks to bring a new approach in the modification process of PES membrane. This applies modification of the membrane materials before membrane synthesis by incorporating hydrophilic additives in the membrane matrix solution during the synthesis. Sulfonation and carboxylation techniques are discussed at the core of their mechanisms. In conclusion, polymer blending results in separation efficiencies being increased significantly and also resulting in improved surface characteristics.
期刊介绍:
Journal of Water Chemistry and Technology focuses on water and wastewater treatment, water pollution monitoring, water purification, and similar topics. The journal publishes original scientific theoretical and experimental articles in the following sections: new developments in the science of water; theoretical principles of water treatment and technology; physical chemistry of water treatment processes; analytical water chemistry; analysis of natural and waste waters; water treatment technology and demineralization of water; biological methods of water treatment; and also solicited critical reviews summarizing the latest findings. The journal welcomes manuscripts from all countries in the English or Ukrainian language. All manuscripts are peer-reviewed.