SOM-FTS:软件可靠性预测与mcdm评估的混合模型

IF 1.3 Q3 ENGINEERING, MULTIDISCIPLINARY International Journal of Engineering and Technology Innovation Pub Date : 2022-06-27 DOI:10.46604/ijeti.2022.8546
Ajay Mahaputra Kumar, Kamaldeep Kaur
{"title":"SOM-FTS:软件可靠性预测与mcdm评估的混合模型","authors":"Ajay Mahaputra Kumar, Kamaldeep Kaur","doi":"10.46604/ijeti.2022.8546","DOIUrl":null,"url":null,"abstract":"The objective of this study is to propose a hybrid model based on self-organized maps (SOM) and fuzzy time series (FTS) for predicting the reliability of software systems. The proposed SOM-FTS model is compared with eleven traditional machine learning-based models. The problem of selecting a suitable software reliability prediction model is represented as a multi-criteria decision-making (MCDM) problem. Twelve software reliability prediction models, including the proposed SOM-FTS model, are evaluated using three MCDM methods, four performance measures, and three software failure datasets. The results show that the proposed SOM-FTS model is the most suitable model among the twelve software reliability prediction models on the basis of MCDM ranking.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SOM-FTS: A Hybrid Model for Software Reliability Prediction and MCDM-Based Evaluation\",\"authors\":\"Ajay Mahaputra Kumar, Kamaldeep Kaur\",\"doi\":\"10.46604/ijeti.2022.8546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study is to propose a hybrid model based on self-organized maps (SOM) and fuzzy time series (FTS) for predicting the reliability of software systems. The proposed SOM-FTS model is compared with eleven traditional machine learning-based models. The problem of selecting a suitable software reliability prediction model is represented as a multi-criteria decision-making (MCDM) problem. Twelve software reliability prediction models, including the proposed SOM-FTS model, are evaluated using three MCDM methods, four performance measures, and three software failure datasets. The results show that the proposed SOM-FTS model is the most suitable model among the twelve software reliability prediction models on the basis of MCDM ranking.\",\"PeriodicalId\":43808,\"journal\":{\"name\":\"International Journal of Engineering and Technology Innovation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/ijeti.2022.8546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/ijeti.2022.8546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

本研究的目的是提出一种基于自组织映射(SOM)和模糊时间序列(FTS)的混合模型来预测软件系统的可靠性。将所提出的SOM-FTS模型与11种传统的基于机器学习的模型进行了比较。选择合适的软件可靠性预测模型是一个多准则决策(MCDM)问题。采用三种MCDM方法、四种性能指标和三种软件故障数据集对包括SOM-FTS模型在内的12个软件可靠性预测模型进行了评估。结果表明,基于MCDM排序的SOM-FTS模型是12个软件可靠性预测模型中最合适的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SOM-FTS: A Hybrid Model for Software Reliability Prediction and MCDM-Based Evaluation
The objective of this study is to propose a hybrid model based on self-organized maps (SOM) and fuzzy time series (FTS) for predicting the reliability of software systems. The proposed SOM-FTS model is compared with eleven traditional machine learning-based models. The problem of selecting a suitable software reliability prediction model is represented as a multi-criteria decision-making (MCDM) problem. Twelve software reliability prediction models, including the proposed SOM-FTS model, are evaluated using three MCDM methods, four performance measures, and three software failure datasets. The results show that the proposed SOM-FTS model is the most suitable model among the twelve software reliability prediction models on the basis of MCDM ranking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.
期刊最新文献
A Study on the Vehicle Routing Problem Considering Infeasible Routing Based on the Improved Genetic Algorithm Prediction of Distribution Network Line Loss Rate Based on Ensemble Learning Optimization of SM4 Encryption Algorithm for Power Metering Data Transmission Finite Element Analysis of a Novel Tensegrity-Based Vibratory Platform Simulation and Measurement Analysis of an Integrated Flow Battery Energy-Storage System with Hybrid Wind/Wave Power Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1