油电混合动力多旋翼无人机动力学建模与控制律设计

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-01-01 DOI:10.1177/17568293221078925
Xice Xu, Yang Lu, Xufeng Wu
{"title":"油电混合动力多旋翼无人机动力学建模与控制律设计","authors":"Xice Xu, Yang Lu, Xufeng Wu","doi":"10.1177/17568293221078925","DOIUrl":null,"url":null,"abstract":"In this paper, the design of control law for a new concept fuel-electric hybrid multi-rotor UAV with lift/attitude control separation is investigated. The remarkable feature of the UAV is that it has a large proportion of fuel weight. Firstly, based on the quasi-coordinate Lagrangian equation and sloshing equivalent model using the multi-mass-spring analogy, the non-linear dynamic model of the UAV considering the fuel slosh dynamics is established. Compared with the existing multi-rotor modeling method, it is more intuitive and accurate to describe the non-linear coupling process of sloshing and UAV's motion degrees of freedom. Secondly, the attitude control law is designed based on the finite-time sliding mode observer and cascaded continuous sliding mode controller to eliminate the adverse effects of fuel sloshing and mass changing, and only using the measurable angles. Furthermore, aiming at the problem of power redundancy of the altitude channel, a memoryless non-linear altitude authority assignment controller based on vertical acceleration is proposed for improving the control performance. Finally, the simulation results of the waypoint flight illustrate the feasibility and effectiveness of the proposed control strategy.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic Modeling and Control Law Design of a Fuel-electric Hybrid Multi-rotor UAV\",\"authors\":\"Xice Xu, Yang Lu, Xufeng Wu\",\"doi\":\"10.1177/17568293221078925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the design of control law for a new concept fuel-electric hybrid multi-rotor UAV with lift/attitude control separation is investigated. The remarkable feature of the UAV is that it has a large proportion of fuel weight. Firstly, based on the quasi-coordinate Lagrangian equation and sloshing equivalent model using the multi-mass-spring analogy, the non-linear dynamic model of the UAV considering the fuel slosh dynamics is established. Compared with the existing multi-rotor modeling method, it is more intuitive and accurate to describe the non-linear coupling process of sloshing and UAV's motion degrees of freedom. Secondly, the attitude control law is designed based on the finite-time sliding mode observer and cascaded continuous sliding mode controller to eliminate the adverse effects of fuel sloshing and mass changing, and only using the measurable angles. Furthermore, aiming at the problem of power redundancy of the altitude channel, a memoryless non-linear altitude authority assignment controller based on vertical acceleration is proposed for improving the control performance. Finally, the simulation results of the waypoint flight illustrate the feasibility and effectiveness of the proposed control strategy.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/17568293221078925\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568293221078925","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

研究了一种升力/姿态控制分离的新概念油电混合多旋翼无人机的控制律设计。UAV的显著特征是它具有很大比例的燃料重量。首先,基于准坐标拉格朗日方程和多质量弹簧类比的晃动等效模型,建立了考虑燃油晃动动力学的无人机非线性动力学模型;与现有的多旋翼建模方法相比,该方法更直观、准确地描述了晃动与无人机运动自由度的非线性耦合过程。其次,设计了基于有限时间滑模观测器和级联连续滑模控制器的姿态控制律,消除了燃料晃动和质量变化的不利影响,并且只利用可测角度;此外,针对高度通道功率冗余问题,提出了一种基于垂直加速度的无记忆非线性高度权限分配控制器,以提高控制性能。最后,航路点飞行仿真结果验证了所提控制策略的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Modeling and Control Law Design of a Fuel-electric Hybrid Multi-rotor UAV
In this paper, the design of control law for a new concept fuel-electric hybrid multi-rotor UAV with lift/attitude control separation is investigated. The remarkable feature of the UAV is that it has a large proportion of fuel weight. Firstly, based on the quasi-coordinate Lagrangian equation and sloshing equivalent model using the multi-mass-spring analogy, the non-linear dynamic model of the UAV considering the fuel slosh dynamics is established. Compared with the existing multi-rotor modeling method, it is more intuitive and accurate to describe the non-linear coupling process of sloshing and UAV's motion degrees of freedom. Secondly, the attitude control law is designed based on the finite-time sliding mode observer and cascaded continuous sliding mode controller to eliminate the adverse effects of fuel sloshing and mass changing, and only using the measurable angles. Furthermore, aiming at the problem of power redundancy of the altitude channel, a memoryless non-linear altitude authority assignment controller based on vertical acceleration is proposed for improving the control performance. Finally, the simulation results of the waypoint flight illustrate the feasibility and effectiveness of the proposed control strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1