{"title":"生物材料中唾液酸测定的临床和诊断意义","authors":"I. V. Volkhina, E. G. Butolin","doi":"10.1134/S199075082203012X","DOIUrl":null,"url":null,"abstract":"<p>Sialic acids (SA) are neuraminic acid derivatives, located at the terminal position in the chains of monosaccharide residues of various glycoconjugates. SA play a dual role: they either mask recognition sites, or, on the contrary, represent biological targets that can be recognized by receptor proteins and serve as ligands. The desialylation/sialylation processes can be considered as a dynamic modification regulated by sialyltransferases and sialidases in response to external or internal stimuli. This review describes the structural and functional diversity and the potential use of SA fractions as biomarkers for various pathological conditions. Almost any extreme impact on the body and inflammatory processes are accompanied by an increase in the level of both total and free SA in the blood and tissues. Possible reasons for the increase of sialoglycoconjugate metabolism indicators in biological material include: (i) activation of the hepatocyte synthesis and secretion of various acute-phase proteins, many of which are sialoglycoproteins, (ii) impaired membrane integrity and destruction of body cells, (iii) high activity of sialidases (neurominidases) and sialyltransferases. Most acute and chronic liver diseases are characterized by the decrease in the total level of SA in the blood serum (because many plasma proteins are synthesized and glycosylated in hepatocytes). Aberrant sialylation results in changes of sialoglycoconjugate structure, its ability to perform biological functions and sialoglycoconjugate half-life. Glycosylation is the most common post-translational modification of proteins in the virus, which not only promotes the formation of specific conformation of viral proteins, but also modulates their interaction with receptors and affects host cell recognition, viral replication and infectivity. Serum total SA concentration increases in some benign and inflammatory conditions, which indicates a lack of specificity and limits their use for early detection and screening of neoplastic diseases. Clinical and diagnostic value of determining the sialoglycoconjugate metabolic indicators, including changes in the content of both SA fractions and specific proteins in various biological fluids and tissues, consists in establishing the causes and mechanisms of biochemical changes in the body in certain diseases. In combination with the measurement of existing markers, they can be used to improve diagnosis, staging and monitoring of therapeutic response in some pathological conditions where the need for specificity is less than for specific diagnostics.</p>","PeriodicalId":485,"journal":{"name":"Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry","volume":"16 3","pages":"165 - 174"},"PeriodicalIF":0.6000,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S199075082203012X.pdf","citationCount":"3","resultStr":"{\"title\":\"Clinical and Diagnostic Significance of Sialic Acids Determination in Biological Material\",\"authors\":\"I. V. Volkhina, E. G. Butolin\",\"doi\":\"10.1134/S199075082203012X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sialic acids (SA) are neuraminic acid derivatives, located at the terminal position in the chains of monosaccharide residues of various glycoconjugates. SA play a dual role: they either mask recognition sites, or, on the contrary, represent biological targets that can be recognized by receptor proteins and serve as ligands. The desialylation/sialylation processes can be considered as a dynamic modification regulated by sialyltransferases and sialidases in response to external or internal stimuli. This review describes the structural and functional diversity and the potential use of SA fractions as biomarkers for various pathological conditions. Almost any extreme impact on the body and inflammatory processes are accompanied by an increase in the level of both total and free SA in the blood and tissues. Possible reasons for the increase of sialoglycoconjugate metabolism indicators in biological material include: (i) activation of the hepatocyte synthesis and secretion of various acute-phase proteins, many of which are sialoglycoproteins, (ii) impaired membrane integrity and destruction of body cells, (iii) high activity of sialidases (neurominidases) and sialyltransferases. Most acute and chronic liver diseases are characterized by the decrease in the total level of SA in the blood serum (because many plasma proteins are synthesized and glycosylated in hepatocytes). Aberrant sialylation results in changes of sialoglycoconjugate structure, its ability to perform biological functions and sialoglycoconjugate half-life. Glycosylation is the most common post-translational modification of proteins in the virus, which not only promotes the formation of specific conformation of viral proteins, but also modulates their interaction with receptors and affects host cell recognition, viral replication and infectivity. Serum total SA concentration increases in some benign and inflammatory conditions, which indicates a lack of specificity and limits their use for early detection and screening of neoplastic diseases. Clinical and diagnostic value of determining the sialoglycoconjugate metabolic indicators, including changes in the content of both SA fractions and specific proteins in various biological fluids and tissues, consists in establishing the causes and mechanisms of biochemical changes in the body in certain diseases. In combination with the measurement of existing markers, they can be used to improve diagnosis, staging and monitoring of therapeutic response in some pathological conditions where the need for specificity is less than for specific diagnostics.</p>\",\"PeriodicalId\":485,\"journal\":{\"name\":\"Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry\",\"volume\":\"16 3\",\"pages\":\"165 - 174\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1134/S199075082203012X.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S199075082203012X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S199075082203012X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Clinical and Diagnostic Significance of Sialic Acids Determination in Biological Material
Sialic acids (SA) are neuraminic acid derivatives, located at the terminal position in the chains of monosaccharide residues of various glycoconjugates. SA play a dual role: they either mask recognition sites, or, on the contrary, represent biological targets that can be recognized by receptor proteins and serve as ligands. The desialylation/sialylation processes can be considered as a dynamic modification regulated by sialyltransferases and sialidases in response to external or internal stimuli. This review describes the structural and functional diversity and the potential use of SA fractions as biomarkers for various pathological conditions. Almost any extreme impact on the body and inflammatory processes are accompanied by an increase in the level of both total and free SA in the blood and tissues. Possible reasons for the increase of sialoglycoconjugate metabolism indicators in biological material include: (i) activation of the hepatocyte synthesis and secretion of various acute-phase proteins, many of which are sialoglycoproteins, (ii) impaired membrane integrity and destruction of body cells, (iii) high activity of sialidases (neurominidases) and sialyltransferases. Most acute and chronic liver diseases are characterized by the decrease in the total level of SA in the blood serum (because many plasma proteins are synthesized and glycosylated in hepatocytes). Aberrant sialylation results in changes of sialoglycoconjugate structure, its ability to perform biological functions and sialoglycoconjugate half-life. Glycosylation is the most common post-translational modification of proteins in the virus, which not only promotes the formation of specific conformation of viral proteins, but also modulates their interaction with receptors and affects host cell recognition, viral replication and infectivity. Serum total SA concentration increases in some benign and inflammatory conditions, which indicates a lack of specificity and limits their use for early detection and screening of neoplastic diseases. Clinical and diagnostic value of determining the sialoglycoconjugate metabolic indicators, including changes in the content of both SA fractions and specific proteins in various biological fluids and tissues, consists in establishing the causes and mechanisms of biochemical changes in the body in certain diseases. In combination with the measurement of existing markers, they can be used to improve diagnosis, staging and monitoring of therapeutic response in some pathological conditions where the need for specificity is less than for specific diagnostics.
期刊介绍:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry covers all major aspects of biomedical chemistry and related areas, including proteomics and molecular biology of (patho)physiological processes, biochemistry, neurochemistry, immunochemistry and clinical chemistry, bioinformatics, gene therapy, drug design and delivery, biochemical pharmacology, introduction and advertisement of new (biochemical) methods into experimental and clinical medicine. The journal also publishes review articles. All issues of the journal usually contain solicited reviews.