在立方体上均匀分布的投影:大偏差透视

IF 0.7 3区 数学 Q2 MATHEMATICS Studia Mathematica Pub Date : 2021-03-30 DOI:10.4064/sm210413-16-9
S. Johnston, Z. Kabluchko, J. Prochno
{"title":"在立方体上均匀分布的投影:大偏差透视","authors":"S. Johnston, Z. Kabluchko, J. Prochno","doi":"10.4064/sm210413-16-9","DOIUrl":null,"url":null,"abstract":"Let $\\Theta^{(n)}$ be a random vector uniformly distributed on the unit sphere $\\mathbb S^{n-1}$ in $\\mathbb R^n$. Consider the projection of the uniform distribution on the cube $[-1,1]^n$ to the line spanned by $\\Theta^{(n)}$. The projected distribution is the random probability measure $\\mu_{\\Theta^{(n)}}$ on $\\mathbb R$ given by \\[ \\mu_{\\Theta^{(n)}}(A) := \\frac 1 {2^n} \\int_{[-1,1]^n} \\mathbb 1\\{\\langle u, \\Theta^{(n)} \\rangle \\in A\\} du, \\] for Borel subets $A$ of $\\mathbb{R}$. It is well known that, with probability $1$, the sequence of random probability measures $\\mu_{\\Theta^{(n)}}$ converges weakly to the centered Gaussian distribution with variance $1/3$. We prove a large deviation principle for the sequence $\\mu_{\\Theta^{(n)}}$ on the space of probability measures on $\\mathbb R$ with speed $n$. The (good) rate function is explicitly given by $I(\\nu(\\alpha)) := - \\frac{1}{2} \\log ( 1 - \\|\\alpha\\|_2^2)$ whenever $\\nu(\\alpha)$ is the law of a random variable of the form \\begin{align*} \\sqrt{1 - \\|\\alpha\\|_2^2 } \\frac{Z}{\\sqrt 3} + \\sum_{ k = 1}^\\infty \\alpha_k U_k, \\end{align*} where $Z$ is standard Gaussian independent of $U_1,U_2,\\ldots$ which are i.i.d. $\\text{Unif}[-1,1]$, and $\\alpha_1 \\geq \\alpha_2 \\geq \\ldots $ is a non-increasing sequence of non-negative reals with $\\|\\alpha\\|_2<1$. We obtain a similar result for random projections of the uniform distribution on the discrete cube $\\{-1,+1\\}^n$.","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Projections of the uniform distribution on the cube: a large deviation perspective\",\"authors\":\"S. Johnston, Z. Kabluchko, J. Prochno\",\"doi\":\"10.4064/sm210413-16-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\Theta^{(n)}$ be a random vector uniformly distributed on the unit sphere $\\\\mathbb S^{n-1}$ in $\\\\mathbb R^n$. Consider the projection of the uniform distribution on the cube $[-1,1]^n$ to the line spanned by $\\\\Theta^{(n)}$. The projected distribution is the random probability measure $\\\\mu_{\\\\Theta^{(n)}}$ on $\\\\mathbb R$ given by \\\\[ \\\\mu_{\\\\Theta^{(n)}}(A) := \\\\frac 1 {2^n} \\\\int_{[-1,1]^n} \\\\mathbb 1\\\\{\\\\langle u, \\\\Theta^{(n)} \\\\rangle \\\\in A\\\\} du, \\\\] for Borel subets $A$ of $\\\\mathbb{R}$. It is well known that, with probability $1$, the sequence of random probability measures $\\\\mu_{\\\\Theta^{(n)}}$ converges weakly to the centered Gaussian distribution with variance $1/3$. We prove a large deviation principle for the sequence $\\\\mu_{\\\\Theta^{(n)}}$ on the space of probability measures on $\\\\mathbb R$ with speed $n$. The (good) rate function is explicitly given by $I(\\\\nu(\\\\alpha)) := - \\\\frac{1}{2} \\\\log ( 1 - \\\\|\\\\alpha\\\\|_2^2)$ whenever $\\\\nu(\\\\alpha)$ is the law of a random variable of the form \\\\begin{align*} \\\\sqrt{1 - \\\\|\\\\alpha\\\\|_2^2 } \\\\frac{Z}{\\\\sqrt 3} + \\\\sum_{ k = 1}^\\\\infty \\\\alpha_k U_k, \\\\end{align*} where $Z$ is standard Gaussian independent of $U_1,U_2,\\\\ldots$ which are i.i.d. $\\\\text{Unif}[-1,1]$, and $\\\\alpha_1 \\\\geq \\\\alpha_2 \\\\geq \\\\ldots $ is a non-increasing sequence of non-negative reals with $\\\\|\\\\alpha\\\\|_2<1$. We obtain a similar result for random projections of the uniform distribution on the discrete cube $\\\\{-1,+1\\\\}^n$.\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/sm210413-16-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm210413-16-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

设$\Theta^{(n)}$是一个均匀分布在$\mathbb R^n$中的单位球面$\mathbbS^{n-1}$上的随机向量。考虑立方体$[-1,1]^n$上的均匀分布到$\Theta^{(n)}$所跨越的线的投影。投影分布是$\mathbb R$上的随机概率测度$\mau_{\Theta^{(n)}}$,由\[\mu_{Theta^(n))}(A):=\frac 1{2^n}\int_{[-1,1]^n}\mathbb 1\{\langle u,\Theta^{(n。众所周知,在概率为$1$的情况下,随机概率测度序列$\mu_{\Theta^{(n)}}$弱收敛于方差为$1/3$的中心高斯分布。我们以速度$n$在$\mathbb R$上的概率测度空间上证明了序列$\mu_{\Theta^{(n)}}$的一个大偏差原理。(好的)速率函数由$I(\nu(\alpha)):=-\frac{1}{2}\log(1-\|\alpha\|_2^2)$明确给出,每当$\nu(\alpha)$是形式为\ begin{align*}\ sqrt{1-\|\alpha\| _2^2}\ frac{Z}{\sqrt 3}+\sum_{k=1}^\ infty\alpha_k U_k,\ end{align*}的随机变量的定律时,$Z$是标准高斯独立于$U_1、U_2、\ldots$的,I.I.d.$\text{Unif}[-1,1]$,并且$\alpha_1\geq\alpha_2\geq\ldots$是$\|\alpha\|_2<1$的非负实数的非递增序列。对于离散立方体$\{-1,+1\^n$上均匀分布的随机投影,我们得到了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Projections of the uniform distribution on the cube: a large deviation perspective
Let $\Theta^{(n)}$ be a random vector uniformly distributed on the unit sphere $\mathbb S^{n-1}$ in $\mathbb R^n$. Consider the projection of the uniform distribution on the cube $[-1,1]^n$ to the line spanned by $\Theta^{(n)}$. The projected distribution is the random probability measure $\mu_{\Theta^{(n)}}$ on $\mathbb R$ given by \[ \mu_{\Theta^{(n)}}(A) := \frac 1 {2^n} \int_{[-1,1]^n} \mathbb 1\{\langle u, \Theta^{(n)} \rangle \in A\} du, \] for Borel subets $A$ of $\mathbb{R}$. It is well known that, with probability $1$, the sequence of random probability measures $\mu_{\Theta^{(n)}}$ converges weakly to the centered Gaussian distribution with variance $1/3$. We prove a large deviation principle for the sequence $\mu_{\Theta^{(n)}}$ on the space of probability measures on $\mathbb R$ with speed $n$. The (good) rate function is explicitly given by $I(\nu(\alpha)) := - \frac{1}{2} \log ( 1 - \|\alpha\|_2^2)$ whenever $\nu(\alpha)$ is the law of a random variable of the form \begin{align*} \sqrt{1 - \|\alpha\|_2^2 } \frac{Z}{\sqrt 3} + \sum_{ k = 1}^\infty \alpha_k U_k, \end{align*} where $Z$ is standard Gaussian independent of $U_1,U_2,\ldots$ which are i.i.d. $\text{Unif}[-1,1]$, and $\alpha_1 \geq \alpha_2 \geq \ldots $ is a non-increasing sequence of non-negative reals with $\|\alpha\|_2<1$. We obtain a similar result for random projections of the uniform distribution on the discrete cube $\{-1,+1\}^n$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
期刊最新文献
A biparameter decomposition of Davis–Garsia type Embeddings between Lorentz sequence spaces are strictly but not finitely strictly singular Symmetric stable processes on amenable groups The $L^p$-to-$L^q$ compactness of commutators with $p \gt q$ $L^p$-boundedness of pseudo-differential operators on homogeneous trees
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1