具有增长特征结构的网络建模

I. Crimaldi, Michela Del Vicario, G. Morrison, Walter Quattrociocchi, M. Riccaboni
{"title":"具有增长特征结构的网络建模","authors":"I. Crimaldi, Michela Del Vicario, G. Morrison, Walter Quattrociocchi, M. Riccaboni","doi":"10.4036/IIS.2017.R.01","DOIUrl":null,"url":null,"abstract":"We present a new network model accounting for multidimensional assortativity. Each node is characterized by a number of features and the probability of a link between two nodes depends on common features. We do not fix a priori the total number of possible features. The bipartite network of the nodes and the features evolves according to a stochastic dynamics that depends on \nthree parameters that respectively regulate the preferential attachment in the transmission of the features to the nodes, the number of new features per node, and the power-law behavior of the total number of observed features. \nOur model also takes into account a mechanism of triadic closure. We provide theoretical results and statistical estimators for the parameters of the model. \nWe validate our approach by means of simulations and an empirical analysis of a network of scientific collaborations.","PeriodicalId":91087,"journal":{"name":"Interdisciplinary information sciences","volume":"23 1","pages":"127-144"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modeling Networks with a Growing Feature-Structure\",\"authors\":\"I. Crimaldi, Michela Del Vicario, G. Morrison, Walter Quattrociocchi, M. Riccaboni\",\"doi\":\"10.4036/IIS.2017.R.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new network model accounting for multidimensional assortativity. Each node is characterized by a number of features and the probability of a link between two nodes depends on common features. We do not fix a priori the total number of possible features. The bipartite network of the nodes and the features evolves according to a stochastic dynamics that depends on \\nthree parameters that respectively regulate the preferential attachment in the transmission of the features to the nodes, the number of new features per node, and the power-law behavior of the total number of observed features. \\nOur model also takes into account a mechanism of triadic closure. We provide theoretical results and statistical estimators for the parameters of the model. \\nWe validate our approach by means of simulations and an empirical analysis of a network of scientific collaborations.\",\"PeriodicalId\":91087,\"journal\":{\"name\":\"Interdisciplinary information sciences\",\"volume\":\"23 1\",\"pages\":\"127-144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary information sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4036/IIS.2017.R.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary information sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4036/IIS.2017.R.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一个新的多维分类网络模型。每个节点都有许多特征,两个节点之间链接的概率取决于共同的特征。我们不会先验地固定可能特征的总数。节点和特征的二分网络根据随机动力学演化,该随机动力学取决于三个参数,这三个参数分别调节特征向节点传输时的优先附着、每个节点的新特征数量以及观察到的特征总数的幂律行为。我们的模型还考虑了一种三元闭包机制。我们提供了模型参数的理论结果和统计估计。我们通过模拟和科学合作网络的实证分析来验证我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Networks with a Growing Feature-Structure
We present a new network model accounting for multidimensional assortativity. Each node is characterized by a number of features and the probability of a link between two nodes depends on common features. We do not fix a priori the total number of possible features. The bipartite network of the nodes and the features evolves according to a stochastic dynamics that depends on three parameters that respectively regulate the preferential attachment in the transmission of the features to the nodes, the number of new features per node, and the power-law behavior of the total number of observed features. Our model also takes into account a mechanism of triadic closure. We provide theoretical results and statistical estimators for the parameters of the model. We validate our approach by means of simulations and an empirical analysis of a network of scientific collaborations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measuring National Refugee Policies: Recent Trends and Implications for Future Development Computational Complexity of Puzzles and Related Topics Singular limit of deterministic and stochastic reaction-diffusion systems Lecture Notes on the Singular Limit of Reaction-diffusion Systems Qualitative Properties of Solutions of Degenerate Parabolic Equations via Energy Approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1