C. Fermanelli, Adrián Chiappori, L. Pierella, C. Saux
{"title":"走向生物废物的价值化:花生壳作为优质化学品和活性生物炭生产的资源","authors":"C. Fermanelli, Adrián Chiappori, L. Pierella, C. Saux","doi":"10.21203/rs.3.rs-632811/v1","DOIUrl":null,"url":null,"abstract":"The purpose of this work was to transform a regional biowaste into value-added chemicals and products through a modest thermo-catalytic pyrolysis process. ZSM-11 (Zeolite Socony Mobile-11) zeolites modified by nickel (Ni) incorporation (1–8 wt%) were synthesized and characterized by means of X-Ray Diffraction, Inductively Coupled Plasma Atomic Emission Spectroscopy, Infrared Fourier Transform Spectroscopy, UV–Vis Diffuse Reflectance Spectra and Temperature Programmed Reduction. Results demonstrated that Ni was mainly incorporated as oxide. These porous materials were evaluated as heterogeneous catalysts to improve biooil composition. In this sense, higher hydrocarbon yields, and quality chemicals were obtained and oxygenates were diminished. The deactivation of the most active material was studied over six cycles of reaction. In order to achieve the circular bioeconomy postulates, the obtained biochar (usually considered a residue) was further transformed through a physicochemical activation. The obtained activated biochars were extensively characterized.","PeriodicalId":22130,"journal":{"name":"Sustainable Environment Research","volume":"32 1","pages":"1-11"},"PeriodicalIF":4.6000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards biowastes valorization: Peanut shell as resource for quality chemicals and activated biochar production\",\"authors\":\"C. Fermanelli, Adrián Chiappori, L. Pierella, C. Saux\",\"doi\":\"10.21203/rs.3.rs-632811/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this work was to transform a regional biowaste into value-added chemicals and products through a modest thermo-catalytic pyrolysis process. ZSM-11 (Zeolite Socony Mobile-11) zeolites modified by nickel (Ni) incorporation (1–8 wt%) were synthesized and characterized by means of X-Ray Diffraction, Inductively Coupled Plasma Atomic Emission Spectroscopy, Infrared Fourier Transform Spectroscopy, UV–Vis Diffuse Reflectance Spectra and Temperature Programmed Reduction. Results demonstrated that Ni was mainly incorporated as oxide. These porous materials were evaluated as heterogeneous catalysts to improve biooil composition. In this sense, higher hydrocarbon yields, and quality chemicals were obtained and oxygenates were diminished. The deactivation of the most active material was studied over six cycles of reaction. In order to achieve the circular bioeconomy postulates, the obtained biochar (usually considered a residue) was further transformed through a physicochemical activation. The obtained activated biochars were extensively characterized.\",\"PeriodicalId\":22130,\"journal\":{\"name\":\"Sustainable Environment Research\",\"volume\":\"32 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Environment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-632811/v1\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-632811/v1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Towards biowastes valorization: Peanut shell as resource for quality chemicals and activated biochar production
The purpose of this work was to transform a regional biowaste into value-added chemicals and products through a modest thermo-catalytic pyrolysis process. ZSM-11 (Zeolite Socony Mobile-11) zeolites modified by nickel (Ni) incorporation (1–8 wt%) were synthesized and characterized by means of X-Ray Diffraction, Inductively Coupled Plasma Atomic Emission Spectroscopy, Infrared Fourier Transform Spectroscopy, UV–Vis Diffuse Reflectance Spectra and Temperature Programmed Reduction. Results demonstrated that Ni was mainly incorporated as oxide. These porous materials were evaluated as heterogeneous catalysts to improve biooil composition. In this sense, higher hydrocarbon yields, and quality chemicals were obtained and oxygenates were diminished. The deactivation of the most active material was studied over six cycles of reaction. In order to achieve the circular bioeconomy postulates, the obtained biochar (usually considered a residue) was further transformed through a physicochemical activation. The obtained activated biochars were extensively characterized.
期刊介绍:
The primary goal of Sustainable Environment Research (SER) is to publish high quality research articles associated with sustainable environmental science and technology and to contribute to improving environmental practice. The scope of SER includes issues of environmental science, technology, management and related fields, especially in response to sustainable water, energy and other natural resources. Potential topics include, but are not limited to: 1. Water and Wastewater • Biological processes • Physical and chemical processes • Watershed management • Advanced and innovative treatment 2. Soil and Groundwater Pollution • Contaminant fate and transport processes • Contaminant site investigation technology • Soil and groundwater remediation technology • Risk assessment in contaminant sites 3. Air Pollution and Climate Change • Ambient air quality management • Greenhouse gases control • Gaseous and particulate pollution control • Indoor air quality management and control 4. Waste Management • Waste reduction and minimization • Recourse recovery and conservation • Solid waste treatment technology and disposal 5. Energy and Resources • Sustainable energy • Local, regional and global sustainability • Environmental management system • Life-cycle assessment • Environmental policy instruments