监督学习在公平交易美国市政债券决策过程中的作用

IF 2.3 Q3 MANAGEMENT EURO Journal on Decision Processes Pub Date : 2018-06-01 DOI:10.1007/s40070-018-0079-2
Gordon H. Dash , Nina Kajiji , Domenic Vonella
{"title":"监督学习在公平交易美国市政债券决策过程中的作用","authors":"Gordon H. Dash ,&nbsp;Nina Kajiji ,&nbsp;Domenic Vonella","doi":"10.1007/s40070-018-0079-2","DOIUrl":null,"url":null,"abstract":"<div><p>Determining a fair price and an appropriate timescale to trade municipal debt is a complex decision. This research uses data informatics to explore transaction characteristics and trading activity of investment grade US municipal bonds. Using the relatively recent data stream distributed by the Municipal Securities Rulemaking Board, we provide an institutional summary of market participants and their trading behavior. Subsequently, we focus on a sample of AAA bonds to derive a new methodology to estimate a trade-weighted benchmark municipal yield curve. The methodology integrates the study of ridge regression, artificial neural networks, and support vector regression. We find an enhanced radial basis function artificial neural network outperforms alternate methods used to estimate municipal term structure. This result forms the foundation for establishing a decision theory on optimal municipal bond trading. Using multivariate modeling of a liquidity domain measured across three dependent variables, we investigate the proposed decision theory by estimating weekly production-theoretic bond liquidity returns to scale. Across the three liquidity measures and for almost all weeks investigated, bond trading liquidity is elastic with respect to the modeled factors. This finding leads us to conclude that an optimal trading policy for municipal debt can be implemented on a weekly timescale using the elasticity estimates of bond price, trade size, risk, days-to-maturity, and the macroeconomic influences of labor in the workforce and building activity.</p></div>","PeriodicalId":44104,"journal":{"name":"EURO Journal on Decision Processes","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40070-018-0079-2","citationCount":"4","resultStr":"{\"title\":\"The role of supervised learning in the decision process to fair trade US municipal debt\",\"authors\":\"Gordon H. Dash ,&nbsp;Nina Kajiji ,&nbsp;Domenic Vonella\",\"doi\":\"10.1007/s40070-018-0079-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Determining a fair price and an appropriate timescale to trade municipal debt is a complex decision. This research uses data informatics to explore transaction characteristics and trading activity of investment grade US municipal bonds. Using the relatively recent data stream distributed by the Municipal Securities Rulemaking Board, we provide an institutional summary of market participants and their trading behavior. Subsequently, we focus on a sample of AAA bonds to derive a new methodology to estimate a trade-weighted benchmark municipal yield curve. The methodology integrates the study of ridge regression, artificial neural networks, and support vector regression. We find an enhanced radial basis function artificial neural network outperforms alternate methods used to estimate municipal term structure. This result forms the foundation for establishing a decision theory on optimal municipal bond trading. Using multivariate modeling of a liquidity domain measured across three dependent variables, we investigate the proposed decision theory by estimating weekly production-theoretic bond liquidity returns to scale. Across the three liquidity measures and for almost all weeks investigated, bond trading liquidity is elastic with respect to the modeled factors. This finding leads us to conclude that an optimal trading policy for municipal debt can be implemented on a weekly timescale using the elasticity estimates of bond price, trade size, risk, days-to-maturity, and the macroeconomic influences of labor in the workforce and building activity.</p></div>\",\"PeriodicalId\":44104,\"journal\":{\"name\":\"EURO Journal on Decision Processes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40070-018-0079-2\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Decision Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2193943821000856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Decision Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2193943821000856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 4

摘要

为市政债券交易确定一个公平的价格和适当的时间表是一个复杂的决定。本研究运用数据信息学的方法探讨美国投资级市政债券的交易特征和交易活动。利用市证券规则制定委员会发布的相对较新的数据流,我们提供了市场参与者及其交易行为的机构摘要。随后,我们将重点放在AAA债券的样本上,以得出一种新的方法来估计贸易加权基准市政收益率曲线。该方法综合了岭回归、人工神经网络和支持向量回归的研究。我们发现一个增强的径向基函数人工神经网络优于用于估计市政期限结构的替代方法。这一结果为建立市政债券最优交易决策理论奠定了基础。使用跨三个因变量测量的流动性域的多元建模,我们通过估计每周生产理论债券流动性回报的规模来研究提出的决策理论。在三种流动性措施和几乎所有周调查中,债券交易流动性相对于模型因素是有弹性的。这一发现使我们得出结论,利用债券价格、交易规模、风险、到期日以及劳动力和建筑活动的宏观经济影响的弹性估计,可以在每周的时间尺度上实施市政债券的最佳交易政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The role of supervised learning in the decision process to fair trade US municipal debt

Determining a fair price and an appropriate timescale to trade municipal debt is a complex decision. This research uses data informatics to explore transaction characteristics and trading activity of investment grade US municipal bonds. Using the relatively recent data stream distributed by the Municipal Securities Rulemaking Board, we provide an institutional summary of market participants and their trading behavior. Subsequently, we focus on a sample of AAA bonds to derive a new methodology to estimate a trade-weighted benchmark municipal yield curve. The methodology integrates the study of ridge regression, artificial neural networks, and support vector regression. We find an enhanced radial basis function artificial neural network outperforms alternate methods used to estimate municipal term structure. This result forms the foundation for establishing a decision theory on optimal municipal bond trading. Using multivariate modeling of a liquidity domain measured across three dependent variables, we investigate the proposed decision theory by estimating weekly production-theoretic bond liquidity returns to scale. Across the three liquidity measures and for almost all weeks investigated, bond trading liquidity is elastic with respect to the modeled factors. This finding leads us to conclude that an optimal trading policy for municipal debt can be implemented on a weekly timescale using the elasticity estimates of bond price, trade size, risk, days-to-maturity, and the macroeconomic influences of labor in the workforce and building activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
10.00%
发文量
15
期刊最新文献
Editorial: Feature Issue on Fair and Explainable Decision Support Systems Editorial: Feature issue on fair and explainable decision support systems Corrigendum to “Multi-objective optimization in real-time operation of rainwater harvesting systems” [EURO Journal on Decision Processes Volume 11 (2023) 100039] Multiobjective combinatorial optimization with interactive evolutionary algorithms: The case of facility location problems Performance assessment of waste sorting: Component-based approach to incorporate quality into data envelopment analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1