基于多输入混合模型的特征连接增强动态手势识别

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Electrical and Computer Engineering Systems Pub Date : 2023-06-05 DOI:10.32985/ijeces.14.5.5
Djazila Souhila Korti, Zohra Slimane, Kheira Lakhdari
{"title":"基于多输入混合模型的特征连接增强动态手势识别","authors":"Djazila Souhila Korti, Zohra Slimane, Kheira Lakhdari","doi":"10.32985/ijeces.14.5.5","DOIUrl":null,"url":null,"abstract":"Radar-based hand gesture recognition is an important research area that provides suitable support for various applications, such as human-computer interaction and healthcare monitoring. Several deep learning algorithms for gesture recognition using Impulse Radio Ultra-Wide Band (IR-UWB) have been proposed. Most of them focus on achieving high performance, which requires a huge amount of data. The procedure of acquiring and annotating data remains a complex, costly, and time-consuming task. Moreover, processing a large volume of data usually requires a complex model with very large training parameters, high computation, and memory consumption. To overcome these shortcomings, we propose a simple data processing approach along with a lightweight multi-input hybrid model structure to enhance performance. We aim to improve the existing state-of-the-art results obtained using an available IR-UWB gesture dataset consisting of range-time images of dynamic hand gestures. First, these images are extended using the Sobel filter, which generates low-level feature representations for each sample. These represent the gradient images in the x-direction, the y-direction, and both the x- and y-directions. Next, we apply these representations as inputs to a three-input Convolutional Neural Network- Long Short-Term Memory- Support Vector Machine (CNN-LSTM-SVM) model. Each one is provided to a separate CNN branch and then concatenated for further processing by the LSTM. This combination allows for the automatic extraction of richer spatiotemporal features of the target with no manual engineering approach or prior domain knowledge. To select the optimal classifier for our model and achieve a high recognition rate, the SVM hyperparameters are tuned using the Optuna framework. Our proposed multi-input hybrid model achieved high performance on several parameters, including 98.27% accuracy, 98.30% precision, 98.29% recall, and 98.27% F1-score while ensuring low complexity. Experimental results indicate that the proposed approach improves accuracy and prevents the model from overfitting.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhancing Dynamic Hand Gesture Recognition using Feature Concatenation via Multi-Input Hybrid Model\",\"authors\":\"Djazila Souhila Korti, Zohra Slimane, Kheira Lakhdari\",\"doi\":\"10.32985/ijeces.14.5.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radar-based hand gesture recognition is an important research area that provides suitable support for various applications, such as human-computer interaction and healthcare monitoring. Several deep learning algorithms for gesture recognition using Impulse Radio Ultra-Wide Band (IR-UWB) have been proposed. Most of them focus on achieving high performance, which requires a huge amount of data. The procedure of acquiring and annotating data remains a complex, costly, and time-consuming task. Moreover, processing a large volume of data usually requires a complex model with very large training parameters, high computation, and memory consumption. To overcome these shortcomings, we propose a simple data processing approach along with a lightweight multi-input hybrid model structure to enhance performance. We aim to improve the existing state-of-the-art results obtained using an available IR-UWB gesture dataset consisting of range-time images of dynamic hand gestures. First, these images are extended using the Sobel filter, which generates low-level feature representations for each sample. These represent the gradient images in the x-direction, the y-direction, and both the x- and y-directions. Next, we apply these representations as inputs to a three-input Convolutional Neural Network- Long Short-Term Memory- Support Vector Machine (CNN-LSTM-SVM) model. Each one is provided to a separate CNN branch and then concatenated for further processing by the LSTM. This combination allows for the automatic extraction of richer spatiotemporal features of the target with no manual engineering approach or prior domain knowledge. To select the optimal classifier for our model and achieve a high recognition rate, the SVM hyperparameters are tuned using the Optuna framework. Our proposed multi-input hybrid model achieved high performance on several parameters, including 98.27% accuracy, 98.30% precision, 98.29% recall, and 98.27% F1-score while ensuring low complexity. Experimental results indicate that the proposed approach improves accuracy and prevents the model from overfitting.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.5.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.5.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

基于雷达的手势识别是一个重要的研究领域,它为人机交互和医疗监控等各种应用提供了合适的支持。提出了几种基于脉冲无线电超宽带(IR-UWB)的手势识别深度学习算法。他们中的大多数都专注于实现高性能,这需要大量的数据。获取和注释数据的过程仍然是一项复杂、昂贵和耗时的任务。此外,处理大量数据通常需要一个复杂的模型,具有非常大的训练参数、高计算和内存消耗。为了克服这些缺点,我们提出了一种简单的数据处理方法以及轻量级的多输入混合模型结构来提高性能。我们的目标是使用由动态手势的距离时间图像组成的可用IR-UWB手势数据集来改进现有的最先进的结果。首先,使用Sobel滤波器对这些图像进行扩展,该滤波器为每个样本生成低级特征表示。它们表示x方向、y方向以及x和y方向的梯度图像。接下来,我们将这些表示作为输入应用于三输入卷积神经网络-长短期记忆-支持向量机(CNN-LSTM-SVM)模型。每一个都被提供给一个单独的CNN分支,然后由LSTM进行进一步处理。这种组合允许自动提取目标更丰富的时空特征,而无需人工工程方法或先验领域知识。为了为我们的模型选择最优分类器并实现高识别率,使用Optuna框架对SVM超参数进行了调优。我们提出的多输入混合模型在保证低复杂度的同时,在多个参数上取得了98.27%的准确率、98.30%的精度、98.29%的召回率和98.27%的f1分数。实验结果表明,该方法提高了模型的拟合精度,防止了模型的过拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Dynamic Hand Gesture Recognition using Feature Concatenation via Multi-Input Hybrid Model
Radar-based hand gesture recognition is an important research area that provides suitable support for various applications, such as human-computer interaction and healthcare monitoring. Several deep learning algorithms for gesture recognition using Impulse Radio Ultra-Wide Band (IR-UWB) have been proposed. Most of them focus on achieving high performance, which requires a huge amount of data. The procedure of acquiring and annotating data remains a complex, costly, and time-consuming task. Moreover, processing a large volume of data usually requires a complex model with very large training parameters, high computation, and memory consumption. To overcome these shortcomings, we propose a simple data processing approach along with a lightweight multi-input hybrid model structure to enhance performance. We aim to improve the existing state-of-the-art results obtained using an available IR-UWB gesture dataset consisting of range-time images of dynamic hand gestures. First, these images are extended using the Sobel filter, which generates low-level feature representations for each sample. These represent the gradient images in the x-direction, the y-direction, and both the x- and y-directions. Next, we apply these representations as inputs to a three-input Convolutional Neural Network- Long Short-Term Memory- Support Vector Machine (CNN-LSTM-SVM) model. Each one is provided to a separate CNN branch and then concatenated for further processing by the LSTM. This combination allows for the automatic extraction of richer spatiotemporal features of the target with no manual engineering approach or prior domain knowledge. To select the optimal classifier for our model and achieve a high recognition rate, the SVM hyperparameters are tuned using the Optuna framework. Our proposed multi-input hybrid model achieved high performance on several parameters, including 98.27% accuracy, 98.30% precision, 98.29% recall, and 98.27% F1-score while ensuring low complexity. Experimental results indicate that the proposed approach improves accuracy and prevents the model from overfitting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.80%
发文量
69
期刊介绍: The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.
期刊最新文献
A Four Slot Dual Feed and Dual Band Reconfigurable Antenna for Fixed Satellite Service Applications Improving Scientific Literature Classification: A Parameter-Efficient Transformer-Based Approach The New ADE-TLM Algorithm for Modeling Debye Medium Multi-Head CNN-based Software Development Risk Classification FOE NET: Segmentation of Fetal in Ultrasound Images Using V-NET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1