{"title":"伊朗中部Chah Zard金银浅成热液矿床黄铁矿类型分形与逐步因子分析","authors":"H. Kouhestani, M. Ghaderi, P. Afzal, K. Zaw","doi":"10.1144/geochem2020-031","DOIUrl":null,"url":null,"abstract":"The major target of this research is the classification of pyrite types using fractal and stepwise factor analyses in the Chah Zard ore deposit, Central Iran. The ore occurs within a breccia/vein type and the major ore mineral hosting gold mineralization is pyrite. In this study, data were selected using optical, scanning electron microscopy (SEM) and backscattered electron observations as well as laser ablation-inductively coupled plasma–mass spectrometry (LA-ICP–MS) analysis. Conventional interpretations represent four gold-bearing pyrite types of various textures including fractured and porous Py1, oscillatory-rimmed and simple-zoned Py2, colloform Py3 and inclusion-rich Py4. The stepwise factor process was performed on the centred log ratio (clr) transformed data in two phases and Au was grouped with As, Te, Ni and Co in the second factor from the second stage (F2-2). Also, C-N fractal modelling was performed on the As, Au, Te and F2-2 values, all of which demonstrate multifractal nature. Four populations were separated based on F2-2 values and the C-N log–log plot. The main gold mineralization starts from 32 ppm, 2.8%, 7.94 ppm and 1.26 for Au, As, Te concentrations and F2-2, respectively, based on the C-N fractal modelling. These values are correlated with inclusion-rich Py4 and simple-zoned and oscillatory-rimmed Py2. The results obtained in this study show that fractal interpretation of LA-ICP–MS data by stepwise factor analysis may provide a suitable tool for the recognition of ore mineralization in epithermal gold deposits.","PeriodicalId":55114,"journal":{"name":"Geochemistry-Exploration Environment Analysis","volume":"20 1","pages":"496 - 508"},"PeriodicalIF":1.0000,"publicationDate":"2020-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1144/geochem2020-031","citationCount":"13","resultStr":"{\"title\":\"Classification of pyrite types using fractal and stepwise factor analyses in the Chah Zard gold-silver epithermal deposit, Central Iran\",\"authors\":\"H. Kouhestani, M. Ghaderi, P. Afzal, K. Zaw\",\"doi\":\"10.1144/geochem2020-031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The major target of this research is the classification of pyrite types using fractal and stepwise factor analyses in the Chah Zard ore deposit, Central Iran. The ore occurs within a breccia/vein type and the major ore mineral hosting gold mineralization is pyrite. In this study, data were selected using optical, scanning electron microscopy (SEM) and backscattered electron observations as well as laser ablation-inductively coupled plasma–mass spectrometry (LA-ICP–MS) analysis. Conventional interpretations represent four gold-bearing pyrite types of various textures including fractured and porous Py1, oscillatory-rimmed and simple-zoned Py2, colloform Py3 and inclusion-rich Py4. The stepwise factor process was performed on the centred log ratio (clr) transformed data in two phases and Au was grouped with As, Te, Ni and Co in the second factor from the second stage (F2-2). Also, C-N fractal modelling was performed on the As, Au, Te and F2-2 values, all of which demonstrate multifractal nature. Four populations were separated based on F2-2 values and the C-N log–log plot. The main gold mineralization starts from 32 ppm, 2.8%, 7.94 ppm and 1.26 for Au, As, Te concentrations and F2-2, respectively, based on the C-N fractal modelling. These values are correlated with inclusion-rich Py4 and simple-zoned and oscillatory-rimmed Py2. The results obtained in this study show that fractal interpretation of LA-ICP–MS data by stepwise factor analysis may provide a suitable tool for the recognition of ore mineralization in epithermal gold deposits.\",\"PeriodicalId\":55114,\"journal\":{\"name\":\"Geochemistry-Exploration Environment Analysis\",\"volume\":\"20 1\",\"pages\":\"496 - 508\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1144/geochem2020-031\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry-Exploration Environment Analysis\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/geochem2020-031\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry-Exploration Environment Analysis","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/geochem2020-031","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Classification of pyrite types using fractal and stepwise factor analyses in the Chah Zard gold-silver epithermal deposit, Central Iran
The major target of this research is the classification of pyrite types using fractal and stepwise factor analyses in the Chah Zard ore deposit, Central Iran. The ore occurs within a breccia/vein type and the major ore mineral hosting gold mineralization is pyrite. In this study, data were selected using optical, scanning electron microscopy (SEM) and backscattered electron observations as well as laser ablation-inductively coupled plasma–mass spectrometry (LA-ICP–MS) analysis. Conventional interpretations represent four gold-bearing pyrite types of various textures including fractured and porous Py1, oscillatory-rimmed and simple-zoned Py2, colloform Py3 and inclusion-rich Py4. The stepwise factor process was performed on the centred log ratio (clr) transformed data in two phases and Au was grouped with As, Te, Ni and Co in the second factor from the second stage (F2-2). Also, C-N fractal modelling was performed on the As, Au, Te and F2-2 values, all of which demonstrate multifractal nature. Four populations were separated based on F2-2 values and the C-N log–log plot. The main gold mineralization starts from 32 ppm, 2.8%, 7.94 ppm and 1.26 for Au, As, Te concentrations and F2-2, respectively, based on the C-N fractal modelling. These values are correlated with inclusion-rich Py4 and simple-zoned and oscillatory-rimmed Py2. The results obtained in this study show that fractal interpretation of LA-ICP–MS data by stepwise factor analysis may provide a suitable tool for the recognition of ore mineralization in epithermal gold deposits.
期刊介绍:
Geochemistry: Exploration, Environment, Analysis (GEEA) is a co-owned journal of the Geological Society of London and the Association of Applied Geochemists (AAG).
GEEA focuses on mineral exploration using geochemistry; related fields also covered include geoanalysis, the development of methods and techniques used to analyse geochemical materials such as rocks, soils, sediments, waters and vegetation, and environmental issues associated with mining and source apportionment.
GEEA is well-known for its thematic sets on hot topics and regularly publishes papers from the biennial International Applied Geochemistry Symposium (IAGS).
Papers that seek to integrate geological, geochemical and geophysical methods of exploration are particularly welcome, as are those that concern geochemical mapping and those that comprise case histories. Given the many links between exploration and environmental geochemistry, the journal encourages the exchange of concepts and data; in particular, to differentiate various sources of elements.
GEEA publishes research articles; discussion papers; book reviews; editorial content and thematic sets.