I. Smirnova, A. Sadanov, G. Baimakhanova, E. Faizulina, L. Tatarkina
{"title":"利用耐盐根瘤菌提高大豆(甘氨酸MAX)耐盐性","authors":"I. Smirnova, A. Sadanov, G. Baimakhanova, E. Faizulina, L. Tatarkina","doi":"10.54910/sabrao2023.55.3.17","DOIUrl":null,"url":null,"abstract":"Soybean (Glycine max [L.] Merr.) is an economically important oilseed crop with an annual increase in growing grain demand. Soybean is a moderately salt-tolerant crop; however, salt stress conditions can affect its growth and yield-related traits and, eventually, reduce productivity. In saline soils, one of the techniques to increase soybean productivity is to use rhizobia inoculation. Although, using industrial rhizobia-based biofertilizers is often ineffective due to their lack of adaptability to salinity. Injecting soybeans with salt-tolerant and growth-promoting rhizobia helps mitigate the effects of salt stress harmful to crop plants. The recent study sought to isolate local strains of salt-tolerant rhizobia, studying its ability to increase soybean tolerance to salt stress conditions. Twenty-four local salttolerant rhizobium isolates underwent isolation from root nodules of soybean grown on saline soils. Studying their basic morphological and biochemical characteristics and ability to withstand salt stress led to the final selection of five salt-tolerant strains. The rhizobium strains were able to synthesize metabolites that stimulate growth and help reduce salt stress in plants. The study of rhizobia nodulation ability under saline conditions resulted in selecting the three most efficient strains from the Bradyrhizobium japonicum species. Inoculation of soybean seeds with salt-tolerant rhizobia proved to mitigate the adverse effects of salinity on plant growth by increasing the root size and the number of nodules in the roots. Thus, the study establishes that inoculation of soybean seeds with local salttolerant rhizobia enhances soybean tolerance to salt stress and improves crop growth and adaptation to soil salinity. Using isolated local strains of salt-tolerant rhizobia will help provide a key and environmentally friendly approach to solving the problem of salt stress for sustainable agriculture.","PeriodicalId":21328,"journal":{"name":"Sabrao Journal of Breeding and Genetics","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"USING SALT-TOLERANT RHIZOBIA TO IMPROVE THE SOYBEAN (GLYCINE MAX) RESILIENCE TO SALINITY\",\"authors\":\"I. Smirnova, A. Sadanov, G. Baimakhanova, E. Faizulina, L. Tatarkina\",\"doi\":\"10.54910/sabrao2023.55.3.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soybean (Glycine max [L.] Merr.) is an economically important oilseed crop with an annual increase in growing grain demand. Soybean is a moderately salt-tolerant crop; however, salt stress conditions can affect its growth and yield-related traits and, eventually, reduce productivity. In saline soils, one of the techniques to increase soybean productivity is to use rhizobia inoculation. Although, using industrial rhizobia-based biofertilizers is often ineffective due to their lack of adaptability to salinity. Injecting soybeans with salt-tolerant and growth-promoting rhizobia helps mitigate the effects of salt stress harmful to crop plants. The recent study sought to isolate local strains of salt-tolerant rhizobia, studying its ability to increase soybean tolerance to salt stress conditions. Twenty-four local salttolerant rhizobium isolates underwent isolation from root nodules of soybean grown on saline soils. Studying their basic morphological and biochemical characteristics and ability to withstand salt stress led to the final selection of five salt-tolerant strains. The rhizobium strains were able to synthesize metabolites that stimulate growth and help reduce salt stress in plants. The study of rhizobia nodulation ability under saline conditions resulted in selecting the three most efficient strains from the Bradyrhizobium japonicum species. Inoculation of soybean seeds with salt-tolerant rhizobia proved to mitigate the adverse effects of salinity on plant growth by increasing the root size and the number of nodules in the roots. Thus, the study establishes that inoculation of soybean seeds with local salttolerant rhizobia enhances soybean tolerance to salt stress and improves crop growth and adaptation to soil salinity. Using isolated local strains of salt-tolerant rhizobia will help provide a key and environmentally friendly approach to solving the problem of salt stress for sustainable agriculture.\",\"PeriodicalId\":21328,\"journal\":{\"name\":\"Sabrao Journal of Breeding and Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sabrao Journal of Breeding and Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54910/sabrao2023.55.3.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sabrao Journal of Breeding and Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54910/sabrao2023.55.3.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
USING SALT-TOLERANT RHIZOBIA TO IMPROVE THE SOYBEAN (GLYCINE MAX) RESILIENCE TO SALINITY
Soybean (Glycine max [L.] Merr.) is an economically important oilseed crop with an annual increase in growing grain demand. Soybean is a moderately salt-tolerant crop; however, salt stress conditions can affect its growth and yield-related traits and, eventually, reduce productivity. In saline soils, one of the techniques to increase soybean productivity is to use rhizobia inoculation. Although, using industrial rhizobia-based biofertilizers is often ineffective due to their lack of adaptability to salinity. Injecting soybeans with salt-tolerant and growth-promoting rhizobia helps mitigate the effects of salt stress harmful to crop plants. The recent study sought to isolate local strains of salt-tolerant rhizobia, studying its ability to increase soybean tolerance to salt stress conditions. Twenty-four local salttolerant rhizobium isolates underwent isolation from root nodules of soybean grown on saline soils. Studying their basic morphological and biochemical characteristics and ability to withstand salt stress led to the final selection of five salt-tolerant strains. The rhizobium strains were able to synthesize metabolites that stimulate growth and help reduce salt stress in plants. The study of rhizobia nodulation ability under saline conditions resulted in selecting the three most efficient strains from the Bradyrhizobium japonicum species. Inoculation of soybean seeds with salt-tolerant rhizobia proved to mitigate the adverse effects of salinity on plant growth by increasing the root size and the number of nodules in the roots. Thus, the study establishes that inoculation of soybean seeds with local salttolerant rhizobia enhances soybean tolerance to salt stress and improves crop growth and adaptation to soil salinity. Using isolated local strains of salt-tolerant rhizobia will help provide a key and environmentally friendly approach to solving the problem of salt stress for sustainable agriculture.
期刊介绍:
The SABRAO Journal of Breeding and Genetics is an international journal of plant breeding and genetics research and was first published in 1969. It is the official publication of the Society for the Advancement of Breeding Research in Asia and Oceania (SABRAO).
Its objectives are to: promote the international exchange of research information on plant breeding and genetics, by describing new research findings, or ideas of a basic or practical nature; and be a medium for the exchange of ideas and news regarding members of the Society.
The Journal gives priority to articles that are of direct relevance to plant breeders and with emphasis on the Asian region. Invited for publication are research articles, short communications, methods, reviews, commentaries, and opinion articles. Scientific contributions are refereed and edited to international standards.
The journal publishes articles for SABRAO members mainly. The Journal preferred strongly that at least one author should be a current member of the Society. Non-members may also publish in the journal.