混合语义特征描述符和模糊c均值聚类用于肺癌检测和分类

P. Priyadharshini, B. Zoraida
{"title":"混合语义特征描述符和模糊c均值聚类用于肺癌检测和分类","authors":"P. Priyadharshini, B. Zoraida","doi":"10.1166/JCTN.2021.9391","DOIUrl":null,"url":null,"abstract":"Lung cancer (LC) will decrease the yield, which will have a negative impact on the economy. Therefore, primary and accurate the attack finding is a priority for the agro-dependent state. In several modern technologies for early detection of LC, image processing has become a one of the\n essential tool so that it cannot only early to find the disease accurately, but also successfully measure it. Various approaches have been developed to detect LC based on background modelling. Most of them focus on temporal information but partially or completely ignore spatial information,\n making it sensitive to noise. In order to overcome these issues an improved hybrid semantic feature descriptor technique is introduced based on Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Pattern (LBP) and histogram of oriented gradients (HOG) feature extraction algorithms. And also\n to improve the LC segmentation problems a fuzzy c-means clustering algorithm (FCM) is used. Experiments and comparisons on publically available LIDC-IBRI dataset. To evaluate the proposed feature extraction performance three different classifiers are analysed such as artificial neural networks\n (ANN), recursive neural network and recurrent neural networks (RNNs).","PeriodicalId":15416,"journal":{"name":"Journal of Computational and Theoretical Nanoscience","volume":"18 1","pages":"1263-1269"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Semantic Feature Descriptor and Fuzzy C-Means Clustering for Lung Cancer Detection and Classification\",\"authors\":\"P. Priyadharshini, B. Zoraida\",\"doi\":\"10.1166/JCTN.2021.9391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung cancer (LC) will decrease the yield, which will have a negative impact on the economy. Therefore, primary and accurate the attack finding is a priority for the agro-dependent state. In several modern technologies for early detection of LC, image processing has become a one of the\\n essential tool so that it cannot only early to find the disease accurately, but also successfully measure it. Various approaches have been developed to detect LC based on background modelling. Most of them focus on temporal information but partially or completely ignore spatial information,\\n making it sensitive to noise. In order to overcome these issues an improved hybrid semantic feature descriptor technique is introduced based on Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Pattern (LBP) and histogram of oriented gradients (HOG) feature extraction algorithms. And also\\n to improve the LC segmentation problems a fuzzy c-means clustering algorithm (FCM) is used. Experiments and comparisons on publically available LIDC-IBRI dataset. To evaluate the proposed feature extraction performance three different classifiers are analysed such as artificial neural networks\\n (ANN), recursive neural network and recurrent neural networks (RNNs).\",\"PeriodicalId\":15416,\"journal\":{\"name\":\"Journal of Computational and Theoretical Nanoscience\",\"volume\":\"18 1\",\"pages\":\"1263-1269\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Theoretical Nanoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/JCTN.2021.9391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Nanoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/JCTN.2021.9391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

癌症(LC)将降低产量,这将对经济产生负面影响。因此,初步准确的攻击发现是农业依赖州的优先事项。在几种早期检测LC的现代技术中,图像处理已经成为一种重要的工具,因此它不仅可以早期准确地发现疾病,而且可以成功地测量疾病。基于背景建模的各种方法已经被开发出来检测LC。它们大多关注时间信息,但部分或完全忽略空间信息,使其对噪声敏感。为了克服这些问题,在灰度共生矩阵(GLCM)、局部二进制模式(LBP)和梯度直方图(HOG)特征提取算法的基础上,提出了一种改进的混合语义特征描述符技术。并且为了改进LC分割问题,使用了模糊c-均值聚类算法(FCM)。在公开可用的LIDC-IBRI数据集上的实验和比较。为了评估所提出的特征提取性能,分析了三种不同的分类器,如人工神经网络(ANN)、递归神经网络和递归神经网络(RNN)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Semantic Feature Descriptor and Fuzzy C-Means Clustering for Lung Cancer Detection and Classification
Lung cancer (LC) will decrease the yield, which will have a negative impact on the economy. Therefore, primary and accurate the attack finding is a priority for the agro-dependent state. In several modern technologies for early detection of LC, image processing has become a one of the essential tool so that it cannot only early to find the disease accurately, but also successfully measure it. Various approaches have been developed to detect LC based on background modelling. Most of them focus on temporal information but partially or completely ignore spatial information, making it sensitive to noise. In order to overcome these issues an improved hybrid semantic feature descriptor technique is introduced based on Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Pattern (LBP) and histogram of oriented gradients (HOG) feature extraction algorithms. And also to improve the LC segmentation problems a fuzzy c-means clustering algorithm (FCM) is used. Experiments and comparisons on publically available LIDC-IBRI dataset. To evaluate the proposed feature extraction performance three different classifiers are analysed such as artificial neural networks (ANN), recursive neural network and recurrent neural networks (RNNs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational and Theoretical Nanoscience
Journal of Computational and Theoretical Nanoscience 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
3.9 months
期刊介绍: Information not localized
期刊最新文献
The 'Insertion/Deletion' Polymorphism, rs4340 and Diabetes Risk: A Pilot Study from a Hospital Cohort. Reincluding: Providing Support to Reengage Youth who Truant in Secondary Schools. Eosinophil cationic protein (ECP) correlates with eosinophil cell counts in the induced sputum of elite swimmers. Synergic action of an inserted carbohydrate-binding module in a glycoside hydrolase family 5 endoglucanase. [Prognostic impact of prior cardiopathy in patients hospitalized with COVID-19 pneumonia].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1