安全聚合编码矩阵反演

Neophytos Charalambides;Mert Pilanci;Alfred O. Hero
{"title":"安全聚合编码矩阵反演","authors":"Neophytos Charalambides;Mert Pilanci;Alfred O. Hero","doi":"10.1109/JSAIT.2023.3312233","DOIUrl":null,"url":null,"abstract":"Coded computing is a method for mitigating straggling workers in a centralized computing network, by using erasure-coding techniques. Federated learning is a decentralized model for training data distributed across client devices. In this work we propose approximating the inverse of an aggregated data matrix, where the data is generated by clients; similar to the federated learning paradigm, while also being resilient to stragglers. To do so, we propose a coded computing method based on gradient coding. We modify this method so that the coordinator does not access the local data at any point; while the clients access the aggregated matrix in order to complete their tasks. The network we consider is not centrally administrated, and the communications which take place are secure against potential eavesdroppers.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"4 ","pages":"405-419"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Securely Aggregated Coded Matrix Inversion\",\"authors\":\"Neophytos Charalambides;Mert Pilanci;Alfred O. Hero\",\"doi\":\"10.1109/JSAIT.2023.3312233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coded computing is a method for mitigating straggling workers in a centralized computing network, by using erasure-coding techniques. Federated learning is a decentralized model for training data distributed across client devices. In this work we propose approximating the inverse of an aggregated data matrix, where the data is generated by clients; similar to the federated learning paradigm, while also being resilient to stragglers. To do so, we propose a coded computing method based on gradient coding. We modify this method so that the coordinator does not access the local data at any point; while the clients access the aggregated matrix in order to complete their tasks. The network we consider is not centrally administrated, and the communications which take place are secure against potential eavesdroppers.\",\"PeriodicalId\":73295,\"journal\":{\"name\":\"IEEE journal on selected areas in information theory\",\"volume\":\"4 \",\"pages\":\"405-419\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in information theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10243572/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10243572/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

编码计算是一种通过使用擦除编码技术来减轻集中式计算网络中分散工作的方法。联邦学习是一种分散的模型,用于训练分布在客户机设备上的数据。在这项工作中,我们建议近似汇总数据矩阵的逆,其中数据由客户生成;类似于联邦学习范式,同时也能适应掉队者。为此,我们提出了一种基于梯度编码的编码计算方法。我们修改这个方法,使协调器在任何时候都不访问本地数据;而客户端访问聚合矩阵以完成其任务。我们考虑的网络不是集中管理的,发生的通信是安全的,防止潜在的窃听者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Securely Aggregated Coded Matrix Inversion
Coded computing is a method for mitigating straggling workers in a centralized computing network, by using erasure-coding techniques. Federated learning is a decentralized model for training data distributed across client devices. In this work we propose approximating the inverse of an aggregated data matrix, where the data is generated by clients; similar to the federated learning paradigm, while also being resilient to stragglers. To do so, we propose a coded computing method based on gradient coding. We modify this method so that the coordinator does not access the local data at any point; while the clients access the aggregated matrix in order to complete their tasks. The network we consider is not centrally administrated, and the communications which take place are secure against potential eavesdroppers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
期刊最新文献
Source Coding for Markov Sources With Partial Memoryless Side Information at the Decoder Deviation From Maximal Entanglement for Mid-Spectrum Eigenstates of Local Hamiltonians Statistical Inference With Limited Memory: A Survey Tightening Continuity Bounds for Entropies and Bounds on Quantum Capacities Dynamic Group Testing to Control and Monitor Disease Progression in a Population
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1