{"title":"矩形平板的尾流","authors":"E. Montes Gomez, D. Sumner","doi":"10.1088/1873-7005/acabe3","DOIUrl":null,"url":null,"abstract":"The mean wake of a three-dimensional surface-mounted rectangular flat plate was studied experimentally in a low-speed wind tunnel for four different aspect (height-to-width) ratios, AR = 3, 2, 1, and 0.5. The Reynolds number based on the plate width was Re = 3.8 × 104 and the boundary layer thickness on the ground plane, relative to the plate width, was δ/W = 1.1. The incidence angle of the plate was varied from α = 0° (where the plate is normal to the flow) to α = 90° (where the plate is parallel to the flow). The mean velocity and vorticity fields in the wake were measured using a seven-hole pressure probe. At α = 0°, the length of the recirculation zone behind the plate becomes progressively shorter as the aspect ratio is lowered and follows the same tendency as that of a finite square prism. The wakes of the slenderer flat plates of AR = 3 and 2 are characterised by two pairs of streamwise vortices: a pair of tip vortices in the upper wake and a pair of ground-plane vortices on the lower edges of the wake. With increasing incidence angle, a single tip vortex comes to dominate the wake, secondary vorticity is induced at various locations, a ‘traffic light’ vortex pattern may form, and ultimately a familiar wing-tip (trailing) vortex develops. In contrast, flow downstream of the less slender flat plates of AR = 1 and 0.5 is characterised by a single pair of large streamwise vortices, which become asymmetric with increasing incidence. Close to the flat plate of AR = 0.5, and at small incidence angles only, a unique pair of small inner vorticity concentrations, of opposite sense of rotation to the main streamwise vortices, is found in the upper part of the wake.","PeriodicalId":56311,"journal":{"name":"Fluid Dynamics Research","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The wake of a rectangular flat plate\",\"authors\":\"E. Montes Gomez, D. Sumner\",\"doi\":\"10.1088/1873-7005/acabe3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mean wake of a three-dimensional surface-mounted rectangular flat plate was studied experimentally in a low-speed wind tunnel for four different aspect (height-to-width) ratios, AR = 3, 2, 1, and 0.5. The Reynolds number based on the plate width was Re = 3.8 × 104 and the boundary layer thickness on the ground plane, relative to the plate width, was δ/W = 1.1. The incidence angle of the plate was varied from α = 0° (where the plate is normal to the flow) to α = 90° (where the plate is parallel to the flow). The mean velocity and vorticity fields in the wake were measured using a seven-hole pressure probe. At α = 0°, the length of the recirculation zone behind the plate becomes progressively shorter as the aspect ratio is lowered and follows the same tendency as that of a finite square prism. The wakes of the slenderer flat plates of AR = 3 and 2 are characterised by two pairs of streamwise vortices: a pair of tip vortices in the upper wake and a pair of ground-plane vortices on the lower edges of the wake. With increasing incidence angle, a single tip vortex comes to dominate the wake, secondary vorticity is induced at various locations, a ‘traffic light’ vortex pattern may form, and ultimately a familiar wing-tip (trailing) vortex develops. In contrast, flow downstream of the less slender flat plates of AR = 1 and 0.5 is characterised by a single pair of large streamwise vortices, which become asymmetric with increasing incidence. Close to the flat plate of AR = 0.5, and at small incidence angles only, a unique pair of small inner vorticity concentrations, of opposite sense of rotation to the main streamwise vortices, is found in the upper part of the wake.\",\"PeriodicalId\":56311,\"journal\":{\"name\":\"Fluid Dynamics Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1873-7005/acabe3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1873-7005/acabe3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
The mean wake of a three-dimensional surface-mounted rectangular flat plate was studied experimentally in a low-speed wind tunnel for four different aspect (height-to-width) ratios, AR = 3, 2, 1, and 0.5. The Reynolds number based on the plate width was Re = 3.8 × 104 and the boundary layer thickness on the ground plane, relative to the plate width, was δ/W = 1.1. The incidence angle of the plate was varied from α = 0° (where the plate is normal to the flow) to α = 90° (where the plate is parallel to the flow). The mean velocity and vorticity fields in the wake were measured using a seven-hole pressure probe. At α = 0°, the length of the recirculation zone behind the plate becomes progressively shorter as the aspect ratio is lowered and follows the same tendency as that of a finite square prism. The wakes of the slenderer flat plates of AR = 3 and 2 are characterised by two pairs of streamwise vortices: a pair of tip vortices in the upper wake and a pair of ground-plane vortices on the lower edges of the wake. With increasing incidence angle, a single tip vortex comes to dominate the wake, secondary vorticity is induced at various locations, a ‘traffic light’ vortex pattern may form, and ultimately a familiar wing-tip (trailing) vortex develops. In contrast, flow downstream of the less slender flat plates of AR = 1 and 0.5 is characterised by a single pair of large streamwise vortices, which become asymmetric with increasing incidence. Close to the flat plate of AR = 0.5, and at small incidence angles only, a unique pair of small inner vorticity concentrations, of opposite sense of rotation to the main streamwise vortices, is found in the upper part of the wake.
期刊介绍:
Fluid Dynamics Research publishes original and creative works in all fields of fluid dynamics. The scope includes theoretical, numerical and experimental studies that contribute to the fundamental understanding and/or application of fluid phenomena.