{"title":"模糊环境下基于情景的ULT冷冻库预防性维修可靠性指标估计","authors":"P. Dhiman, Amit Kumar","doi":"10.33889/ijmems.2023.8.3.027","DOIUrl":null,"url":null,"abstract":"Reliability of high demand machines is quite necessary and it can be maintained through proper and timely maintenance, Ultra-low temperature (ULT) freezer is one of those kinds of machines which are in high demand during covid-19 pandemic for the storage of vaccine. The rapid production of vaccines for the prevention of coronavirus disease 2019 (COVID-19) is a worldwide requirement. Now the next challenge is to store the vaccine in a ULT freezer. It’s become really a big problem to store the vaccine which creates the demand of ULT freezer. The present paper investigates a situational based performance of the ULT freezer with the aim to predict the impact of different component failures as well as human errors on the final performance of the same. For the study, it is not possible to extract the parameters (failure rate and repair time) of the components that never failed before. Thus, to overcome this difficulty, here authors use the possibility theory. Authors present the available data in Right triangular fuzzy number with some tolerance as suggested by system analyst. The lambda-tau methodology and arithmetic operations on right triangular generalized fuzzy numbers (RTrFN) are used to find the various performance parameters namely MTTF, MTTR, MTBF, reliability, availability, maintainability (RAM) and ENOF, under fuzzy environment. The proposed model has been studied using possibility theory under working conditions, preventive maintenance as well as under the rest of conditions. This study reveals the most and least critical component of the ULT freezer which helps maintenance department to plan the maintenance strategy accordingly.","PeriodicalId":44185,"journal":{"name":"International Journal of Mathematical Engineering and Management Sciences","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Situational Based Reliability Indices Estimation of ULT Freezer using Preventive Maintenance under Fuzzy Environment\",\"authors\":\"P. Dhiman, Amit Kumar\",\"doi\":\"10.33889/ijmems.2023.8.3.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliability of high demand machines is quite necessary and it can be maintained through proper and timely maintenance, Ultra-low temperature (ULT) freezer is one of those kinds of machines which are in high demand during covid-19 pandemic for the storage of vaccine. The rapid production of vaccines for the prevention of coronavirus disease 2019 (COVID-19) is a worldwide requirement. Now the next challenge is to store the vaccine in a ULT freezer. It’s become really a big problem to store the vaccine which creates the demand of ULT freezer. The present paper investigates a situational based performance of the ULT freezer with the aim to predict the impact of different component failures as well as human errors on the final performance of the same. For the study, it is not possible to extract the parameters (failure rate and repair time) of the components that never failed before. Thus, to overcome this difficulty, here authors use the possibility theory. Authors present the available data in Right triangular fuzzy number with some tolerance as suggested by system analyst. The lambda-tau methodology and arithmetic operations on right triangular generalized fuzzy numbers (RTrFN) are used to find the various performance parameters namely MTTF, MTTR, MTBF, reliability, availability, maintainability (RAM) and ENOF, under fuzzy environment. The proposed model has been studied using possibility theory under working conditions, preventive maintenance as well as under the rest of conditions. This study reveals the most and least critical component of the ULT freezer which helps maintenance department to plan the maintenance strategy accordingly.\",\"PeriodicalId\":44185,\"journal\":{\"name\":\"International Journal of Mathematical Engineering and Management Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematical Engineering and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33889/ijmems.2023.8.3.027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Engineering and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33889/ijmems.2023.8.3.027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A Situational Based Reliability Indices Estimation of ULT Freezer using Preventive Maintenance under Fuzzy Environment
Reliability of high demand machines is quite necessary and it can be maintained through proper and timely maintenance, Ultra-low temperature (ULT) freezer is one of those kinds of machines which are in high demand during covid-19 pandemic for the storage of vaccine. The rapid production of vaccines for the prevention of coronavirus disease 2019 (COVID-19) is a worldwide requirement. Now the next challenge is to store the vaccine in a ULT freezer. It’s become really a big problem to store the vaccine which creates the demand of ULT freezer. The present paper investigates a situational based performance of the ULT freezer with the aim to predict the impact of different component failures as well as human errors on the final performance of the same. For the study, it is not possible to extract the parameters (failure rate and repair time) of the components that never failed before. Thus, to overcome this difficulty, here authors use the possibility theory. Authors present the available data in Right triangular fuzzy number with some tolerance as suggested by system analyst. The lambda-tau methodology and arithmetic operations on right triangular generalized fuzzy numbers (RTrFN) are used to find the various performance parameters namely MTTF, MTTR, MTBF, reliability, availability, maintainability (RAM) and ENOF, under fuzzy environment. The proposed model has been studied using possibility theory under working conditions, preventive maintenance as well as under the rest of conditions. This study reveals the most and least critical component of the ULT freezer which helps maintenance department to plan the maintenance strategy accordingly.
期刊介绍:
IJMEMS is a peer reviewed international journal aiming on both the theoretical and practical aspects of mathematical, engineering and management sciences. The original, not-previously published, research manuscripts on topics such as the following (but not limited to) will be considered for publication: *Mathematical Sciences- applied mathematics and allied fields, operations research, mathematical statistics. *Engineering Sciences- computer science engineering, mechanical engineering, information technology engineering, civil engineering, aeronautical engineering, industrial engineering, systems engineering, reliability engineering, production engineering. *Management Sciences- engineering management, risk management, business models, supply chain management.