基于Stata的两层随机前沿分析

IF 3.2 2区 数学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS Stata Journal Pub Date : 2023-03-01 DOI:10.1177/1536867X231162033
Yujun Lian, Chang Liu, Christopher F. Parmeter
{"title":"基于Stata的两层随机前沿分析","authors":"Yujun Lian, Chang Liu, Christopher F. Parmeter","doi":"10.1177/1536867X231162033","DOIUrl":null,"url":null,"abstract":"In this article, we introduce the sftt command, which fits two-tier stochastic frontier (2TSF) models with cross-sectional data. Like most frontier models, a 2TSF model consists of a linear frontier model and a composite error term. The error term is assumed to be a mixture of three components: two onesided inefficiency terms—strictly nonnegative and nonpositive, respectively—and a symmetric noise term. When providing appropriate distributional assumptions, sftt can fit models with exponential and half-normal specifications. sftt also fits 2TSF models with the scaling property to mitigate concerns over distributional specifications. In addition, we provide two subcommands, sftt sigs and sftt eff, to assist in postestimation efficiency analysis. We provide an overview of the 2TSF literature, a description of the sftt command and its options, and examples using simulated and actual data.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Two-tier stochastic frontier analysis using Stata\",\"authors\":\"Yujun Lian, Chang Liu, Christopher F. Parmeter\",\"doi\":\"10.1177/1536867X231162033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we introduce the sftt command, which fits two-tier stochastic frontier (2TSF) models with cross-sectional data. Like most frontier models, a 2TSF model consists of a linear frontier model and a composite error term. The error term is assumed to be a mixture of three components: two onesided inefficiency terms—strictly nonnegative and nonpositive, respectively—and a symmetric noise term. When providing appropriate distributional assumptions, sftt can fit models with exponential and half-normal specifications. sftt also fits 2TSF models with the scaling property to mitigate concerns over distributional specifications. In addition, we provide two subcommands, sftt sigs and sftt eff, to assist in postestimation efficiency analysis. We provide an overview of the 2TSF literature, a description of the sftt command and its options, and examples using simulated and actual data.\",\"PeriodicalId\":51171,\"journal\":{\"name\":\"Stata Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stata Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1177/1536867X231162033\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stata Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1536867X231162033","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们介绍了sftt命令,它适用于具有横截面数据的双层随机前沿(2TSF)模型。与大多数前沿模型一样,2TSF模型由线性前沿模型和复合误差项组成。误差项被假设为三个分量的混合物:两个单边低效项——分别是严格非负和非正的——和一个对称噪声项。当提供适当的分布假设时,sftt可以拟合具有指数和半正态规范的模型。sftt还适用于具有缩放特性的2TSF模型,以减轻对分布式规范的担忧。此外,我们还提供了两个子命令,sftt-sigs和sftt-eff,以帮助进行后估计效率分析。我们提供了2TSF文献的概述、sftt命令及其选项的描述,以及使用模拟和实际数据的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two-tier stochastic frontier analysis using Stata
In this article, we introduce the sftt command, which fits two-tier stochastic frontier (2TSF) models with cross-sectional data. Like most frontier models, a 2TSF model consists of a linear frontier model and a composite error term. The error term is assumed to be a mixture of three components: two onesided inefficiency terms—strictly nonnegative and nonpositive, respectively—and a symmetric noise term. When providing appropriate distributional assumptions, sftt can fit models with exponential and half-normal specifications. sftt also fits 2TSF models with the scaling property to mitigate concerns over distributional specifications. In addition, we provide two subcommands, sftt sigs and sftt eff, to assist in postestimation efficiency analysis. We provide an overview of the 2TSF literature, a description of the sftt command and its options, and examples using simulated and actual data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stata Journal
Stata Journal 数学-统计学与概率论
CiteScore
7.80
自引率
4.20%
发文量
44
审稿时长
>12 weeks
期刊介绍: The Stata Journal is a quarterly publication containing articles about statistics, data analysis, teaching methods, and effective use of Stata''s language. The Stata Journal publishes reviewed papers together with shorter notes and comments, regular columns, book reviews, and other material of interest to researchers applying statistics in a variety of disciplines.
期刊最新文献
posw: A command for the stepwise Neyman-orthogonal estimator A Lagrange multiplier test for the mean stationarity assumption in dynamic panel-data models Visualizing uncertainty in a two-dimensional estimate using confidence and comparison regions Color palettes for Stata graphics: An update Pseudo-observations in a multistate setting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1