Toufik Barkat, Fatima Yohra Kadid, M. Aggoune, R. Abdessemed
{"title":"圆形无阀微泵的建模与仿真","authors":"Toufik Barkat, Fatima Yohra Kadid, M. Aggoune, R. Abdessemed","doi":"10.24874/JSSCM.2018.12.02.07","DOIUrl":null,"url":null,"abstract":"In this paper, the behavior of a valveless, diaphragm-founded, piezoelectric micropump is studied and simulated. The nature of the piezoelectric actuator is a PZT-5H piezo-disk and the diaphragm is made of Silicon dioxide (SiO2). Applying Fluid-Structure Interaction (FSI) approach, the simulation for the valveless micropump is carried out in COMSOL 3.5 Multiphysics. Also, electro-structure mating between deformation of a piezoelectric disk due to an applied voltage and resulting displacement of the membrane is considered. From the obtained results, the optimum design required a 0.5 mm membrane and 0.5mm piezo actuator. Numerical simulations are reported to study respectively the effects of the voltage on the diaphragm deflection and the nature of the fluid on the net flow rate.","PeriodicalId":42945,"journal":{"name":"Journal of the Serbian Society for Computational Mechanics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MODELING AND SIMULATION OF A CIRCULAR VALVELESS MICROPUMP\",\"authors\":\"Toufik Barkat, Fatima Yohra Kadid, M. Aggoune, R. Abdessemed\",\"doi\":\"10.24874/JSSCM.2018.12.02.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the behavior of a valveless, diaphragm-founded, piezoelectric micropump is studied and simulated. The nature of the piezoelectric actuator is a PZT-5H piezo-disk and the diaphragm is made of Silicon dioxide (SiO2). Applying Fluid-Structure Interaction (FSI) approach, the simulation for the valveless micropump is carried out in COMSOL 3.5 Multiphysics. Also, electro-structure mating between deformation of a piezoelectric disk due to an applied voltage and resulting displacement of the membrane is considered. From the obtained results, the optimum design required a 0.5 mm membrane and 0.5mm piezo actuator. Numerical simulations are reported to study respectively the effects of the voltage on the diaphragm deflection and the nature of the fluid on the net flow rate.\",\"PeriodicalId\":42945,\"journal\":{\"name\":\"Journal of the Serbian Society for Computational Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Serbian Society for Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24874/JSSCM.2018.12.02.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Serbian Society for Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24874/JSSCM.2018.12.02.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
MODELING AND SIMULATION OF A CIRCULAR VALVELESS MICROPUMP
In this paper, the behavior of a valveless, diaphragm-founded, piezoelectric micropump is studied and simulated. The nature of the piezoelectric actuator is a PZT-5H piezo-disk and the diaphragm is made of Silicon dioxide (SiO2). Applying Fluid-Structure Interaction (FSI) approach, the simulation for the valveless micropump is carried out in COMSOL 3.5 Multiphysics. Also, electro-structure mating between deformation of a piezoelectric disk due to an applied voltage and resulting displacement of the membrane is considered. From the obtained results, the optimum design required a 0.5 mm membrane and 0.5mm piezo actuator. Numerical simulations are reported to study respectively the effects of the voltage on the diaphragm deflection and the nature of the fluid on the net flow rate.