运行时验证中的不确定性:调查

IF 13.3 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Computer Science Review Pub Date : 2023-09-07 DOI:10.1016/j.cosrev.2023.100594
Rania Taleb , Sylvain Hallé , Raphaël Khoury
{"title":"运行时验证中的不确定性:调查","authors":"Rania Taleb ,&nbsp;Sylvain Hallé ,&nbsp;Raphaël Khoury","doi":"10.1016/j.cosrev.2023.100594","DOIUrl":null,"url":null,"abstract":"<div><p>Runtime Verification can be defined as a collection of formal methods for studying the dynamic evaluation of execution traces against formal specifications. Aside from creating a monitor from specifications and building algorithms for the evaluation of the trace, the process of gathering events and making them available for the monitor and the communication between the system under analysis and the monitor are critical and important steps in the runtime verification process. In many situations and for a variety of reasons, the event trace could be incomplete or could contain imprecise events. When a missing or ambiguous event is detected, the monitor may be unable to deliver a sound verdict. In this survey, we review the literature dealing with the problem of monitoring with incomplete traces. We list the different causes of uncertainty that have been identified, and analyze their effect on the monitoring process. We identify and compare the different methods that have been proposed to perform monitoring on such traces, highlighting the advantages and drawbacks of each method.</p></div>","PeriodicalId":48633,"journal":{"name":"Computer Science Review","volume":null,"pages":null},"PeriodicalIF":13.3000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty in runtime verification: A survey\",\"authors\":\"Rania Taleb ,&nbsp;Sylvain Hallé ,&nbsp;Raphaël Khoury\",\"doi\":\"10.1016/j.cosrev.2023.100594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Runtime Verification can be defined as a collection of formal methods for studying the dynamic evaluation of execution traces against formal specifications. Aside from creating a monitor from specifications and building algorithms for the evaluation of the trace, the process of gathering events and making them available for the monitor and the communication between the system under analysis and the monitor are critical and important steps in the runtime verification process. In many situations and for a variety of reasons, the event trace could be incomplete or could contain imprecise events. When a missing or ambiguous event is detected, the monitor may be unable to deliver a sound verdict. In this survey, we review the literature dealing with the problem of monitoring with incomplete traces. We list the different causes of uncertainty that have been identified, and analyze their effect on the monitoring process. We identify and compare the different methods that have been proposed to perform monitoring on such traces, highlighting the advantages and drawbacks of each method.</p></div>\",\"PeriodicalId\":48633,\"journal\":{\"name\":\"Computer Science Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574013723000618\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science Review","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574013723000618","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

运行时验证可以定义为一组形式化方法,用于根据形式化规范研究执行轨迹的动态评估。除了根据规范创建监视器和构建用于评估跟踪的算法之外,收集事件并使其可用于监视器的过程以及正在分析的系统与监视器之间的通信是运行时验证过程中的关键和重要步骤。在许多情况下,由于各种原因,事件跟踪可能是不完整的,或者可能包含不精确的事件。当检测到缺失或模糊事件时,监视器可能无法提供可靠的判决。在这篇综述中,我们回顾了处理不完整痕迹监测问题的文献。我们列出了已确定的不确定性的不同原因,并分析了它们对监测过程的影响。我们确定并比较了已经提出的对这些痕迹进行监测的不同方法,突出了每种方法的优点和缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uncertainty in runtime verification: A survey

Runtime Verification can be defined as a collection of formal methods for studying the dynamic evaluation of execution traces against formal specifications. Aside from creating a monitor from specifications and building algorithms for the evaluation of the trace, the process of gathering events and making them available for the monitor and the communication between the system under analysis and the monitor are critical and important steps in the runtime verification process. In many situations and for a variety of reasons, the event trace could be incomplete or could contain imprecise events. When a missing or ambiguous event is detected, the monitor may be unable to deliver a sound verdict. In this survey, we review the literature dealing with the problem of monitoring with incomplete traces. We list the different causes of uncertainty that have been identified, and analyze their effect on the monitoring process. We identify and compare the different methods that have been proposed to perform monitoring on such traces, highlighting the advantages and drawbacks of each method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Science Review
Computer Science Review Computer Science-General Computer Science
CiteScore
32.70
自引率
0.00%
发文量
26
审稿时长
51 days
期刊介绍: Computer Science Review, a publication dedicated to research surveys and expository overviews of open problems in computer science, targets a broad audience within the field seeking comprehensive insights into the latest developments. The journal welcomes articles from various fields as long as their content impacts the advancement of computer science. In particular, articles that review the application of well-known Computer Science methods to other areas are in scope only if these articles advance the fundamental understanding of those methods.
期刊最新文献
A systematic review on security aspects of fog computing environment: Challenges, solutions and future directions A survey of deep learning techniques for detecting and recognizing objects in complex environments Intervention scenarios and robot capabilities for support, guidance and health monitoring for the elderly Resilience of deep learning applications: A systematic literature review of analysis and hardening techniques AI-driven cluster-based routing protocols in WSNs: A survey of fuzzy heuristics, metaheuristics, and machine learning models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1