多功能电力调节器设计中分散发电的功率损耗分析提高电能质量

O. Osaloni, A. S. Akinyemi, Abayomi Adebiyi, O. Ibitoye
{"title":"多功能电力调节器设计中分散发电的功率损耗分析提高电能质量","authors":"O. Osaloni, A. S. Akinyemi, Abayomi Adebiyi, O. Ibitoye","doi":"10.37394/232016.2023.18.10","DOIUrl":null,"url":null,"abstract":"The recent modification in utilizing Multifunction Power Conditioner (MPC) such as Unified Power Quality Conditioner devices in power systems has led to different degrees of power losses, owing to electronic power impacts. This paper presents a detailed comparison of power loss analysis in various configurations of MPC, that is, the conventional unified power quality conditioner (UPQC) and the UPQC with distributed generation (〖UPQC〗_DG). The independent losses based on inverter design and distributed generation interfacing to the distribution form the basis for each configuration case. The investigation considered conventional UPQC as the base case for power losses, and the study was extended to 〖UPQC〗_DG at steady state operating condition. In all configurations, Switching Losses (SL) and conduction losses were considered using simulation studies carried out in MATLAB/SIMULINK, and the results obtained in all cases were used for comparative studies. Finally, the outcome indicates that the losses in 〖UPQC〗_DG is more than conventional UPQC based on simulation results in all cases.","PeriodicalId":38993,"journal":{"name":"WSEAS Transactions on Power Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Power Loss Analysis with Dispersed Generation in Multifunction Power Conditioner Design to Improve Power Quality\",\"authors\":\"O. Osaloni, A. S. Akinyemi, Abayomi Adebiyi, O. Ibitoye\",\"doi\":\"10.37394/232016.2023.18.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent modification in utilizing Multifunction Power Conditioner (MPC) such as Unified Power Quality Conditioner devices in power systems has led to different degrees of power losses, owing to electronic power impacts. This paper presents a detailed comparison of power loss analysis in various configurations of MPC, that is, the conventional unified power quality conditioner (UPQC) and the UPQC with distributed generation (〖UPQC〗_DG). The independent losses based on inverter design and distributed generation interfacing to the distribution form the basis for each configuration case. The investigation considered conventional UPQC as the base case for power losses, and the study was extended to 〖UPQC〗_DG at steady state operating condition. In all configurations, Switching Losses (SL) and conduction losses were considered using simulation studies carried out in MATLAB/SIMULINK, and the results obtained in all cases were used for comparative studies. Finally, the outcome indicates that the losses in 〖UPQC〗_DG is more than conventional UPQC based on simulation results in all cases.\",\"PeriodicalId\":38993,\"journal\":{\"name\":\"WSEAS Transactions on Power Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232016.2023.18.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232016.2023.18.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

最近在电力系统中使用多功能电源调节器(MPC),如统一电能质量调节器设备,由于电子功率的影响,导致了不同程度的功率损耗。本文详细比较了不同配置的MPC,即常规统一电能质量调节器(UPQC)和带分布式发电的UPQC(〖UPQC〗_DG)的功率损耗分析。基于逆变器设计的独立损耗和分布式电源与配电的接口构成了每个配置案例的基础。本研究以传统UPQC为基本工况,将研究范围扩展到稳态工况下的〖UPQC〗_DG。在所有配置中,通过MATLAB/SIMULINK进行仿真研究,考虑开关损耗(SL)和导通损耗,并将所有情况下得到的结果用于对比研究。仿真结果表明,在所有情况下,〖UPQC〗_DG的损耗均大于常规UPQC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power Loss Analysis with Dispersed Generation in Multifunction Power Conditioner Design to Improve Power Quality
The recent modification in utilizing Multifunction Power Conditioner (MPC) such as Unified Power Quality Conditioner devices in power systems has led to different degrees of power losses, owing to electronic power impacts. This paper presents a detailed comparison of power loss analysis in various configurations of MPC, that is, the conventional unified power quality conditioner (UPQC) and the UPQC with distributed generation (〖UPQC〗_DG). The independent losses based on inverter design and distributed generation interfacing to the distribution form the basis for each configuration case. The investigation considered conventional UPQC as the base case for power losses, and the study was extended to 〖UPQC〗_DG at steady state operating condition. In all configurations, Switching Losses (SL) and conduction losses were considered using simulation studies carried out in MATLAB/SIMULINK, and the results obtained in all cases were used for comparative studies. Finally, the outcome indicates that the losses in 〖UPQC〗_DG is more than conventional UPQC based on simulation results in all cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WSEAS Transactions on Power Systems
WSEAS Transactions on Power Systems Engineering-Industrial and Manufacturing Engineering
CiteScore
1.10
自引率
0.00%
发文量
36
期刊介绍: WSEAS Transactions on Power Systems publishes original research papers relating to electric power and energy. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with generation, transmission & distribution planning, alternative energy systems, power market, switching and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
期刊最新文献
The Effect of Tuned Compensation Capacitors in the Induction Motors Comparative Study of the MPPT Control for the Photovoltaic Water Pumping System between FSS-P&O and VSS-P&O Grid Synchronization in a 3-Phase Inverter using Double Integration Method Wind Power Integration and Challenges in Low Wind Zones. A Study Case: Albania Analysis of Cascaded Asymmetric Inverters using Low Frequency Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1