{"title":"佛罗里达的经历:是时候重振和重组清洁湖泊计划了","authors":"D. Canfield, R. Bachmann, M. Hoyer","doi":"10.1080/10402381.2023.2236588","DOIUrl":null,"url":null,"abstract":"Abstract Canfield, DE Jr., Bachmann RW, Hoyer MV. 2023. The Florida experience: time for a revitalized and restructured Clean Lakes Program. Lake Reserv Manage. 39:191–212. Anthropogenic nonpoint source nutrient enrichment of lakes is a worldwide problem, but inputs from the watershed to Florida lakes may not be as severe as speculated. Long-term trends for total phosphorus (TP), total nitrogen (TN), chlorophyll (Chl), and Secchi disk transparency (SDT), enrichment surrogates, in 381 lakes monitored for 20–43 yr and having extensive management to none demonstrated improvements in trophic conditions following point source removals. Afterward, TP (R2 = 0.85), TN (R2 = 0.49), and Chl (R2 = 0.50) continued to decline significantly (P < 0.05) and SDT (R2 = 0.63) increased. For 99 state-designated “impaired” lakes, TP (R2 = 0.73), TN (R2 = 0.45), and Chl (R2 = 0.44) also declined and SDT (R2 = 0.69) increased. To consider natural background conditions, lakes were assigned to their ambient TP and TN zones. Geometric TP (93%) and TN (82%) zone averages for each lake after removal of point sources remained within each zone’s 95% confidence interval. Individual lake trend analyses documented that ∼80% showed no (most) or an improving trend for the trophic state variables. After correcting for “statistically meaningful” results or to remove false significances, <5% of the lakes had trophic state variable changes associated with eutrophication. If lakes are to be rehabilitated and/or protected to maintain designated uses, exclusive focus on watershed management of nonpoint source nutrients and associated regulatory actions should not be relied on to correct “impairments” in a timely manner. Management priorities should focus on actual causes of impairment and the most effective and efficient approaches for improvement.","PeriodicalId":18017,"journal":{"name":"Lake and Reservoir Management","volume":"39 1","pages":"191 - 212"},"PeriodicalIF":1.1000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Florida experience: time for a revitalized and restructured Clean Lakes Program\",\"authors\":\"D. Canfield, R. Bachmann, M. Hoyer\",\"doi\":\"10.1080/10402381.2023.2236588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Canfield, DE Jr., Bachmann RW, Hoyer MV. 2023. The Florida experience: time for a revitalized and restructured Clean Lakes Program. Lake Reserv Manage. 39:191–212. Anthropogenic nonpoint source nutrient enrichment of lakes is a worldwide problem, but inputs from the watershed to Florida lakes may not be as severe as speculated. Long-term trends for total phosphorus (TP), total nitrogen (TN), chlorophyll (Chl), and Secchi disk transparency (SDT), enrichment surrogates, in 381 lakes monitored for 20–43 yr and having extensive management to none demonstrated improvements in trophic conditions following point source removals. Afterward, TP (R2 = 0.85), TN (R2 = 0.49), and Chl (R2 = 0.50) continued to decline significantly (P < 0.05) and SDT (R2 = 0.63) increased. For 99 state-designated “impaired” lakes, TP (R2 = 0.73), TN (R2 = 0.45), and Chl (R2 = 0.44) also declined and SDT (R2 = 0.69) increased. To consider natural background conditions, lakes were assigned to their ambient TP and TN zones. Geometric TP (93%) and TN (82%) zone averages for each lake after removal of point sources remained within each zone’s 95% confidence interval. Individual lake trend analyses documented that ∼80% showed no (most) or an improving trend for the trophic state variables. After correcting for “statistically meaningful” results or to remove false significances, <5% of the lakes had trophic state variable changes associated with eutrophication. If lakes are to be rehabilitated and/or protected to maintain designated uses, exclusive focus on watershed management of nonpoint source nutrients and associated regulatory actions should not be relied on to correct “impairments” in a timely manner. Management priorities should focus on actual causes of impairment and the most effective and efficient approaches for improvement.\",\"PeriodicalId\":18017,\"journal\":{\"name\":\"Lake and Reservoir Management\",\"volume\":\"39 1\",\"pages\":\"191 - 212\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lake and Reservoir Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10402381.2023.2236588\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lake and Reservoir Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10402381.2023.2236588","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LIMNOLOGY","Score":null,"Total":0}
The Florida experience: time for a revitalized and restructured Clean Lakes Program
Abstract Canfield, DE Jr., Bachmann RW, Hoyer MV. 2023. The Florida experience: time for a revitalized and restructured Clean Lakes Program. Lake Reserv Manage. 39:191–212. Anthropogenic nonpoint source nutrient enrichment of lakes is a worldwide problem, but inputs from the watershed to Florida lakes may not be as severe as speculated. Long-term trends for total phosphorus (TP), total nitrogen (TN), chlorophyll (Chl), and Secchi disk transparency (SDT), enrichment surrogates, in 381 lakes monitored for 20–43 yr and having extensive management to none demonstrated improvements in trophic conditions following point source removals. Afterward, TP (R2 = 0.85), TN (R2 = 0.49), and Chl (R2 = 0.50) continued to decline significantly (P < 0.05) and SDT (R2 = 0.63) increased. For 99 state-designated “impaired” lakes, TP (R2 = 0.73), TN (R2 = 0.45), and Chl (R2 = 0.44) also declined and SDT (R2 = 0.69) increased. To consider natural background conditions, lakes were assigned to their ambient TP and TN zones. Geometric TP (93%) and TN (82%) zone averages for each lake after removal of point sources remained within each zone’s 95% confidence interval. Individual lake trend analyses documented that ∼80% showed no (most) or an improving trend for the trophic state variables. After correcting for “statistically meaningful” results or to remove false significances, <5% of the lakes had trophic state variable changes associated with eutrophication. If lakes are to be rehabilitated and/or protected to maintain designated uses, exclusive focus on watershed management of nonpoint source nutrients and associated regulatory actions should not be relied on to correct “impairments” in a timely manner. Management priorities should focus on actual causes of impairment and the most effective and efficient approaches for improvement.
期刊介绍:
Lake and Reservoir Management (LRM) publishes original, previously unpublished studies relevant to lake and reservoir management. Papers address the management of lakes and reservoirs, their watersheds and tributaries, along with the limnology and ecology needed for sound management of these systems. Case studies that advance the science of lake management or confirm important management concepts are appropriate as long as there is clearly described management significance. Papers on economic, social, regulatory and policy aspects of lake management are also welcome with appropriate supporting data and management implications. Literature syntheses and papers developing a conceptual foundation of lake and watershed ecology will be considered for publication, but there needs to be clear emphasis on management implications. Modeling papers will be considered where the model is properly verified but it is also highly preferable that management based on the model has been taken and results have been documented. Application of known models to yet another system without a clear advance in resultant management are unlikely to be accepted. Shorter notes that convey important early results of long-term studies or provide data relating to causative agents or management approaches that warrant further study are acceptable even if the story is not yet complete. All submissions are subject to peer review to assure relevance and reliability for management application.