{"title":"L∞非紧子类的lp采样恢复","authors":"G. Byrenheid, S. Stasyuk, T. Ullrich","doi":"10.3389/fams.2023.1216331","DOIUrl":null,"url":null,"abstract":"In this article, we study the sampling recovery problem for certain relevant multivariate function classes on the cube [0, 1]d, which are not compactly embedded into L∞([0,1]d). Recent tools relating the sampling widths to the Kolmogorov or best m-term trigonometric widths in the uniform norm are therefore not applicable. In a sense, we continue the research on the small smoothness problem by considering limiting smoothness in the context of Besov and Triebel-Lizorkin spaces with dominating mixed regularity such that the sampling recovery problem is still relevant. There is not much information available on the recovery of such functions except for a previous result by Oswald in the univariate case and Dinh Dũng in the multivariate case. As a first step, we prove the uniform boundedness of the ℓp-norm of the Faber coefficients at a fixed level by Fourier analytic means. Using this, we can control the error made by a (Smolyak) truncated Faber series in Lq([0,1]d) with q <∞. It turns out that the main rate of convergence is sharp. Thus, we obtain results also for S1,∞1F([0,1]d), a space “close” to S11W([0,1]d), which is important in numerical analysis, especially numerical integration, but has rather poor Fourier analytical properties.","PeriodicalId":36662,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lp-Sampling recovery for non-compact subclasses of L∞\",\"authors\":\"G. Byrenheid, S. Stasyuk, T. Ullrich\",\"doi\":\"10.3389/fams.2023.1216331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study the sampling recovery problem for certain relevant multivariate function classes on the cube [0, 1]d, which are not compactly embedded into L∞([0,1]d). Recent tools relating the sampling widths to the Kolmogorov or best m-term trigonometric widths in the uniform norm are therefore not applicable. In a sense, we continue the research on the small smoothness problem by considering limiting smoothness in the context of Besov and Triebel-Lizorkin spaces with dominating mixed regularity such that the sampling recovery problem is still relevant. There is not much information available on the recovery of such functions except for a previous result by Oswald in the univariate case and Dinh Dũng in the multivariate case. As a first step, we prove the uniform boundedness of the ℓp-norm of the Faber coefficients at a fixed level by Fourier analytic means. Using this, we can control the error made by a (Smolyak) truncated Faber series in Lq([0,1]d) with q <∞. It turns out that the main rate of convergence is sharp. Thus, we obtain results also for S1,∞1F([0,1]d), a space “close” to S11W([0,1]d), which is important in numerical analysis, especially numerical integration, but has rather poor Fourier analytical properties.\",\"PeriodicalId\":36662,\"journal\":{\"name\":\"Frontiers in Applied Mathematics and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Applied Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fams.2023.1216331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fams.2023.1216331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Lp-Sampling recovery for non-compact subclasses of L∞
In this article, we study the sampling recovery problem for certain relevant multivariate function classes on the cube [0, 1]d, which are not compactly embedded into L∞([0,1]d). Recent tools relating the sampling widths to the Kolmogorov or best m-term trigonometric widths in the uniform norm are therefore not applicable. In a sense, we continue the research on the small smoothness problem by considering limiting smoothness in the context of Besov and Triebel-Lizorkin spaces with dominating mixed regularity such that the sampling recovery problem is still relevant. There is not much information available on the recovery of such functions except for a previous result by Oswald in the univariate case and Dinh Dũng in the multivariate case. As a first step, we prove the uniform boundedness of the ℓp-norm of the Faber coefficients at a fixed level by Fourier analytic means. Using this, we can control the error made by a (Smolyak) truncated Faber series in Lq([0,1]d) with q <∞. It turns out that the main rate of convergence is sharp. Thus, we obtain results also for S1,∞1F([0,1]d), a space “close” to S11W([0,1]d), which is important in numerical analysis, especially numerical integration, but has rather poor Fourier analytical properties.