{"title":"含广义分数阶导数等宽方程的有效组合解法","authors":"M. Derakhshan","doi":"10.1155/2021/7066398","DOIUrl":null,"url":null,"abstract":"<jats:p>In this paper, the efficient combined method based on the homotopy perturbation Sadik transform method (HPSTM) is applied to solve the physical and functional equations containing the Caputo–Prabhakar fractional derivative. The mathematical model of this equation of order <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>μ</mi>\n <mo>∈</mo>\n <mfenced open=\"(\" close=\"]\" separators=\"|\">\n <mrow>\n <mn>0,1</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> with <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>λ</mi>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mi>ℤ</mi>\n </mrow>\n <mrow>\n <mo>+</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>,</mo>\n <mi>σ</mi>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mo>+</mo>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula> is presented as follows: <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mmultiscripts>\n <mrow>\n <msubsup>\n <mstyle displaystyle=\"true\">\n <mi mathvariant=\"fraktur\">D</mi>\n </mstyle>\n <mi>t</mi>\n <mi>μ</mi>\n </msubsup>\n </mrow>\n <mprescripts />\n <none />\n <mi>C</mi>\n </mmultiscripts>\n <mi>u</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n <mo>,</mo>\n <mi>t</mi>\n </mrow>\n </mfenced>\n <mo>+</mo>\n <mi>θ</mi>\n <msup>\n <mrow>\n <mi>u</mi>\n </mrow>\n <mrow>\n <mi>λ</mi>\n </mrow>\n </msup>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n <mo>,</mo>\n <mi>t</mi>\n </mrow>\n </mfenced>\n <msub>\n <mrow>\n <mi>u</mi>\n </mrow>\n <mrow>\n <mi>x</mi>\n </mrow>\n </msub>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n <mo>,</mo>\n <mi>t</mi>\n </mrow>\n </mfenced>\n <mo>−</mo>\n <mi>σ</mi>\n <msub>\n <mrow>\n <mi>u</mi>\n </mrow>\n <mrow>\n <mi>x</mi>\n <mi>x</mi>\n <mi>t</mi>\n </mrow>\n </msub>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n <mo>,</mo>\n <mi>t</mi>\n </mrow>\n </mfenced>\n <mo>=</mo>\n <mn>0</mn>\n <mo>,</mo>\n </math>\n </jats:inline-formula> where for <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>λ</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>σ</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mi>s</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>λ</mi>\n <mo>=</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>=</mo>\n <mn>3</mn>\n <mo>,</mo>\n <mi>σ</mi>\n <mo>=</mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula>, equations are changed into the equal width and modified equal width equations, respectively. The analytical method which we have used for solving this equation is based on a combination of the homotopy perturbation method and Sadik transform. The convergence and error analysis are discussed in this article. Plots of the analytical results with three examples are presented to show the applicability of this numerical method. Comparison between the obtained absolute errors by the suggested method and other methods is demonstrated.</jats:p>","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analytical Solutions for the Equal Width Equations Containing Generalized Fractional Derivative Using the Efficient Combined Method\",\"authors\":\"M. Derakhshan\",\"doi\":\"10.1155/2021/7066398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>In this paper, the efficient combined method based on the homotopy perturbation Sadik transform method (HPSTM) is applied to solve the physical and functional equations containing the Caputo–Prabhakar fractional derivative. The mathematical model of this equation of order <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <mi>μ</mi>\\n <mo>∈</mo>\\n <mfenced open=\\\"(\\\" close=\\\"]\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>0,1</mn>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> with <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>λ</mi>\\n <mo>∈</mo>\\n <msup>\\n <mrow>\\n <mi>ℤ</mi>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n </mrow>\\n </msup>\\n <mo>,</mo>\\n <mi>θ</mi>\\n <mo>,</mo>\\n <mi>σ</mi>\\n <mo>∈</mo>\\n <msup>\\n <mrow>\\n <mi>ℝ</mi>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula> is presented as follows: <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mmultiscripts>\\n <mrow>\\n <msubsup>\\n <mstyle displaystyle=\\\"true\\\">\\n <mi mathvariant=\\\"fraktur\\\">D</mi>\\n </mstyle>\\n <mi>t</mi>\\n <mi>μ</mi>\\n </msubsup>\\n </mrow>\\n <mprescripts />\\n <none />\\n <mi>C</mi>\\n </mmultiscripts>\\n <mi>u</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n </mrow>\\n </mfenced>\\n <mo>+</mo>\\n <mi>θ</mi>\\n <msup>\\n <mrow>\\n <mi>u</mi>\\n </mrow>\\n <mrow>\\n <mi>λ</mi>\\n </mrow>\\n </msup>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n </mrow>\\n </mfenced>\\n <msub>\\n <mrow>\\n <mi>u</mi>\\n </mrow>\\n <mrow>\\n <mi>x</mi>\\n </mrow>\\n </msub>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n </mrow>\\n </mfenced>\\n <mo>−</mo>\\n <mi>σ</mi>\\n <msub>\\n <mrow>\\n <mi>u</mi>\\n </mrow>\\n <mrow>\\n <mi>x</mi>\\n <mi>x</mi>\\n <mi>t</mi>\\n </mrow>\\n </msub>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n </mrow>\\n </mfenced>\\n <mo>=</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n </math>\\n </jats:inline-formula> where for <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi>λ</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>θ</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>σ</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n <mi>s</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mi>λ</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mi>θ</mi>\\n <mo>=</mo>\\n <mn>3</mn>\\n <mo>,</mo>\\n <mi>σ</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </math>\\n </jats:inline-formula>, equations are changed into the equal width and modified equal width equations, respectively. The analytical method which we have used for solving this equation is based on a combination of the homotopy perturbation method and Sadik transform. The convergence and error analysis are discussed in this article. Plots of the analytical results with three examples are presented to show the applicability of this numerical method. Comparison between the obtained absolute errors by the suggested method and other methods is demonstrated.</jats:p>\",\"PeriodicalId\":55967,\"journal\":{\"name\":\"International Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/7066398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/7066398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
摘要
本文提出了一种基于同伦微扰Sadik变换方法的高效组合方法 (HPSTM)用于求解包含Caputo–Prabhakar分数导数的物理和函数方程。μ∈0,1阶方程的数学模型ℤ + , θ,σ∈ℝ + 表示如下:D tμC u x,t+θuλx,t u x x,t−σu x x tx、t=0时,其中对于λ=1,θ=1,σ=1s和λ=2、θ=3,σ=1时,将方程分别转化为等宽方程和修正的等宽方程。我们用来求解这个方程的分析方法是基于同伦微扰方法和Sadik变换的结合。本文讨论了收敛性和误差分析。给出了三个实例的分析结果图,以表明该数值方法的适用性。并与其它方法进行了比较。
Analytical Solutions for the Equal Width Equations Containing Generalized Fractional Derivative Using the Efficient Combined Method
In this paper, the efficient combined method based on the homotopy perturbation Sadik transform method (HPSTM) is applied to solve the physical and functional equations containing the Caputo–Prabhakar fractional derivative. The mathematical model of this equation of order with is presented as follows: where for and , equations are changed into the equal width and modified equal width equations, respectively. The analytical method which we have used for solving this equation is based on a combination of the homotopy perturbation method and Sadik transform. The convergence and error analysis are discussed in this article. Plots of the analytical results with three examples are presented to show the applicability of this numerical method. Comparison between the obtained absolute errors by the suggested method and other methods is demonstrated.