具有非帧生成协变量的光滑最大得分估计

IF 0.8 4区 经济学 Q3 ECONOMICS Econometric Reviews Pub Date : 2021-09-14 DOI:10.1080/07474938.2021.1889205
Xiaoyong Cao, Xirong Chen, Wenzheng Gao, C. Hsiao
{"title":"具有非帧生成协变量的光滑最大得分估计","authors":"Xiaoyong Cao, Xirong Chen, Wenzheng Gao, C. Hsiao","doi":"10.1080/07474938.2021.1889205","DOIUrl":null,"url":null,"abstract":"Abstract This paper develops a two-stage semiparametric procedure to estimate the preference parameters of a binary choice model under uncertainty. In the model, the agent’s decision rule is affected by the conditional expectation. We nonparametrically estimate the conditional expectation in the first stage. Then, in the second stage, the preference parameters are estimated by the smoothed maximum score method. We establish the consistency and asymptotic distribution of the two-stage estimator. Furthermore, we also characterize the conditions under which the first-stage nonparametric estimation will not affect the asymptotic distribution of the smoothed maximum score estimator. Monte Carlo simulation results demonstrate that our proposed estimator performs well in finite samples.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"40 1","pages":"796 - 813"},"PeriodicalIF":0.8000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07474938.2021.1889205","citationCount":"2","resultStr":"{\"title\":\"Smoothed maximum score estimation with nonparametrically generated covariates\",\"authors\":\"Xiaoyong Cao, Xirong Chen, Wenzheng Gao, C. Hsiao\",\"doi\":\"10.1080/07474938.2021.1889205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper develops a two-stage semiparametric procedure to estimate the preference parameters of a binary choice model under uncertainty. In the model, the agent’s decision rule is affected by the conditional expectation. We nonparametrically estimate the conditional expectation in the first stage. Then, in the second stage, the preference parameters are estimated by the smoothed maximum score method. We establish the consistency and asymptotic distribution of the two-stage estimator. Furthermore, we also characterize the conditions under which the first-stage nonparametric estimation will not affect the asymptotic distribution of the smoothed maximum score estimator. Monte Carlo simulation results demonstrate that our proposed estimator performs well in finite samples.\",\"PeriodicalId\":11438,\"journal\":{\"name\":\"Econometric Reviews\",\"volume\":\"40 1\",\"pages\":\"796 - 813\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07474938.2021.1889205\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Reviews\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/07474938.2021.1889205\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2021.1889205","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文提出了一种估计不确定条件下二元选择模型偏好参数的两阶段半参数方法。在该模型中,agent的决策规则受条件期望的影响。在第一阶段对条件期望进行非参数估计。然后,在第二阶段,使用平滑最大分数法估计偏好参数。我们建立了两阶段估计量的相合性和渐近分布。此外,我们还刻画了第一阶段非参数估计不影响平滑最大分数估计量渐近分布的条件。蒙特卡罗仿真结果表明,我们提出的估计器在有限样本下具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smoothed maximum score estimation with nonparametrically generated covariates
Abstract This paper develops a two-stage semiparametric procedure to estimate the preference parameters of a binary choice model under uncertainty. In the model, the agent’s decision rule is affected by the conditional expectation. We nonparametrically estimate the conditional expectation in the first stage. Then, in the second stage, the preference parameters are estimated by the smoothed maximum score method. We establish the consistency and asymptotic distribution of the two-stage estimator. Furthermore, we also characterize the conditions under which the first-stage nonparametric estimation will not affect the asymptotic distribution of the smoothed maximum score estimator. Monte Carlo simulation results demonstrate that our proposed estimator performs well in finite samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometric Reviews
Econometric Reviews 管理科学-数学跨学科应用
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.
期刊最新文献
Estimation of random functions proxying for unobservables Bootstrap inference on a factor model based average treatment effects estimator Using machine learning for efficient flexible regression adjustment in economic experiments Lag order selection for long-run variance estimation in econometrics Selecting the number of factors in approximate factor models using group variable regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1