具有传输延迟的分数阶Hopfield反应-扩散神经网络的图灵不稳定性和模式形成

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2022-05-05 DOI:10.15388/namc.2022.27.27473
Jiazhe Lin, Jiapeng Li, R. Xu
{"title":"具有传输延迟的分数阶Hopfield反应-扩散神经网络的图灵不稳定性和模式形成","authors":"Jiazhe Lin, Jiapeng Li, R. Xu","doi":"10.15388/namc.2022.27.27473","DOIUrl":null,"url":null,"abstract":"It is well known that integer-order neural networks with diffusion have rich spatial and temporal dynamical behaviors, including Turing pattern and Hopf bifurcation. Recently, some studies indicate that fractional calculus can depict the memory and hereditary attributes of neural networks more accurately. In this paper, we mainly investigate the Turing pattern in a delayed reaction–diffusion neural network with Caputo-type fractional derivative. In particular, we find that this fractional neural network can form steadily spatial patterns even if its first-derivative counterpart cannot develop any steady pattern, which implies that temporal fractional derivative contributes to pattern formation. Numerical simulations show that both fractional derivative and time delay have influence on the shape of Turing patterns.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turing instability and pattern formation of a fractional Hopfield reaction–diffusion neural network with transmission delay\",\"authors\":\"Jiazhe Lin, Jiapeng Li, R. Xu\",\"doi\":\"10.15388/namc.2022.27.27473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that integer-order neural networks with diffusion have rich spatial and temporal dynamical behaviors, including Turing pattern and Hopf bifurcation. Recently, some studies indicate that fractional calculus can depict the memory and hereditary attributes of neural networks more accurately. In this paper, we mainly investigate the Turing pattern in a delayed reaction–diffusion neural network with Caputo-type fractional derivative. In particular, we find that this fractional neural network can form steadily spatial patterns even if its first-derivative counterpart cannot develop any steady pattern, which implies that temporal fractional derivative contributes to pattern formation. Numerical simulations show that both fractional derivative and time delay have influence on the shape of Turing patterns.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15388/namc.2022.27.27473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2022.27.27473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,具有扩散的整阶神经网络具有丰富的时空动力学行为,包括图灵模式和Hopf分岔。近年来,一些研究表明分数阶微积分可以更准确地描述神经网络的记忆和遗传属性。本文主要研究一类具有caputo型分数阶导数的延迟反应-扩散神经网络的图灵模式。特别是,我们发现分数阶神经网络可以形成稳定的空间模式,即使它的一阶导数对应的神经网络不能形成任何稳定的模式,这意味着时间分数阶导数有助于模式的形成。数值模拟结果表明,分数阶导数和时间延迟对图灵图案的形状都有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Turing instability and pattern formation of a fractional Hopfield reaction–diffusion neural network with transmission delay
It is well known that integer-order neural networks with diffusion have rich spatial and temporal dynamical behaviors, including Turing pattern and Hopf bifurcation. Recently, some studies indicate that fractional calculus can depict the memory and hereditary attributes of neural networks more accurately. In this paper, we mainly investigate the Turing pattern in a delayed reaction–diffusion neural network with Caputo-type fractional derivative. In particular, we find that this fractional neural network can form steadily spatial patterns even if its first-derivative counterpart cannot develop any steady pattern, which implies that temporal fractional derivative contributes to pattern formation. Numerical simulations show that both fractional derivative and time delay have influence on the shape of Turing patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1