肌萎缩性侧索硬化症的视神经蛋白功能障碍:为什么如此令人费解?

IF 0.2 4区 生物学 Q4 BIOLOGY Periodicum Biologorum Pub Date : 2020-12-30 DOI:10.18054/PB.V121-122I1-2.10627
Nikolina Prtenjaca
{"title":"肌萎缩性侧索硬化症的视神经蛋白功能障碍:为什么如此令人费解?","authors":"Nikolina Prtenjaca","doi":"10.18054/PB.V121-122I1-2.10627","DOIUrl":null,"url":null,"abstract":"Mutations in optineurin have been linked to amyotrophic lateral sclerosis (ALS) a decade ago, but its exact role in the neurodegenerative process is still unclear. As a lysine 63 (K63)and methionine (M1)-linked polyubiquitin-binding protein, optineurin has been reported to act as an adaptor in inflammatory signaling pathways mediated via nuclear factor kappa-lightchain-enhancer of activated B cells (NF-κB) and interferon regulatory factor 3 (IRF3), as well as in membrane-associated trafficking events including autophagy, maintenance of the Golgi apparatus, and exocytosis. Other studies have demonstrated its role in other processes such as regulation of mitosis, transcription, necroptosis and apoptosis. However, many of the reported effects in cell models have been proven difficult to reproduce in optineurin animal models, demonstrating the challenges of extrapolation between model systems. Knowing that multifunctional proteins present a “nightmare” for researchers, to help navigating through this field, we address the most common controversies, open questions, and artefacts related to optineurin and its role in pathogenesis of ALS and other neurodegenerative diseases.","PeriodicalId":19950,"journal":{"name":"Periodicum Biologorum","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optineurin Dysfunction in Amyotrophic Lateral Sclerosis: Why So Puzzling?\",\"authors\":\"Nikolina Prtenjaca\",\"doi\":\"10.18054/PB.V121-122I1-2.10627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mutations in optineurin have been linked to amyotrophic lateral sclerosis (ALS) a decade ago, but its exact role in the neurodegenerative process is still unclear. As a lysine 63 (K63)and methionine (M1)-linked polyubiquitin-binding protein, optineurin has been reported to act as an adaptor in inflammatory signaling pathways mediated via nuclear factor kappa-lightchain-enhancer of activated B cells (NF-κB) and interferon regulatory factor 3 (IRF3), as well as in membrane-associated trafficking events including autophagy, maintenance of the Golgi apparatus, and exocytosis. Other studies have demonstrated its role in other processes such as regulation of mitosis, transcription, necroptosis and apoptosis. However, many of the reported effects in cell models have been proven difficult to reproduce in optineurin animal models, demonstrating the challenges of extrapolation between model systems. Knowing that multifunctional proteins present a “nightmare” for researchers, to help navigating through this field, we address the most common controversies, open questions, and artefacts related to optineurin and its role in pathogenesis of ALS and other neurodegenerative diseases.\",\"PeriodicalId\":19950,\"journal\":{\"name\":\"Periodicum Biologorum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodicum Biologorum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.18054/PB.V121-122I1-2.10627\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodicum Biologorum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.18054/PB.V121-122I1-2.10627","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

十年前,optinurin的突变与肌萎缩性侧索硬化症(ALS)有关,但其在神经退行性过程中的确切作用仍不清楚。作为赖氨酸63 (K63)和甲硫氨酸(M1)连接的多泛素结合蛋白,optinineurin已被报道在活化B细胞的核因子κB -轻链增强剂(NF-κB)和干扰素调节因子3 (IRF3)介导的炎症信号通路中作为一个适配体,以及在膜相关的运输事件中,包括自噬、高尔基体的维持和胞外分泌。其他研究也证实了它在其他过程中的作用,如有丝分裂、转录、坏死和细胞凋亡的调节。然而,许多在细胞模型中报道的效应已被证明难以在优神经蛋白动物模型中重现,这表明了模型系统之间外推的挑战。了解到多功能蛋白对研究人员来说是一个“噩梦”,为了帮助他们在这个领域中导航,我们解决了与优神经蛋白及其在ALS和其他神经退行性疾病的发病机制中的作用有关的最常见的争议、悬而未决的问题和人工制品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optineurin Dysfunction in Amyotrophic Lateral Sclerosis: Why So Puzzling?
Mutations in optineurin have been linked to amyotrophic lateral sclerosis (ALS) a decade ago, but its exact role in the neurodegenerative process is still unclear. As a lysine 63 (K63)and methionine (M1)-linked polyubiquitin-binding protein, optineurin has been reported to act as an adaptor in inflammatory signaling pathways mediated via nuclear factor kappa-lightchain-enhancer of activated B cells (NF-κB) and interferon regulatory factor 3 (IRF3), as well as in membrane-associated trafficking events including autophagy, maintenance of the Golgi apparatus, and exocytosis. Other studies have demonstrated its role in other processes such as regulation of mitosis, transcription, necroptosis and apoptosis. However, many of the reported effects in cell models have been proven difficult to reproduce in optineurin animal models, demonstrating the challenges of extrapolation between model systems. Knowing that multifunctional proteins present a “nightmare” for researchers, to help navigating through this field, we address the most common controversies, open questions, and artefacts related to optineurin and its role in pathogenesis of ALS and other neurodegenerative diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Periodicum Biologorum
Periodicum Biologorum 生物-生物学
CiteScore
0.80
自引率
0.00%
发文量
16
审稿时长
6-12 weeks
期刊介绍: This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
期刊最新文献
Tissue optical clearing methods for microscopy: A review of their application in neuroscience Attendance of extracurricular activities in the field of natural sciences and the attractiveness of the content offered for extracurricular activities in biology in elementary schools Ultrastructural and immunofluorescence features of the epidermal cells and its secretory granules in the amphioxus Branchiostoma lanceolatum L. Application of thermal analysis methods in biology and medicine A young researcher’s guide to three-dimensional fluorescence microscopy of living cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1