{"title":"基于DL的5G系统信道访客","authors":"Bircan Çalişir","doi":"10.53070/bbd.1173848","DOIUrl":null,"url":null,"abstract":"Bu çalışma, Derin Öğrenme ve 5G ile oluşturulan veriler kullanılarak kanal tahmini için bir evrişimsel sinir ağının (CNN) nasıl eğitileceğini gösterir. Eğitilmiş CNN, fiziksel aşağı bağlantı paylaşılan kanal (PDSCH) demodülasyon referans sinyalini (DM-RS) kullanarak tek girişli tek çıkışlı (SISO) modunda kanal tahmini gerçekleştirilmiştir. Kanal tahmini için genel yaklaşım, iletim kanalı içine değeri bilinen referans pilot sembolleri eklemek ve daha sonra bu pilot sembolleri kullanarak kanal yanıtının geri kalanını enterpolasyon yapmaktır. Kanal tahmini yapmak için derin öğrenme teknikleri de kullanılabilir. Örneğin, PDSCH kaynak ızgarasını 2 boyutlu bir görüntü olarak görüntüleyerek, kanal tahmini problemini, CNN'lerin etkili olduğu gürültü giderme veya süper çözünürlüğe benzer bir görüntü işleme problemine dönüştürebilir. Bu çalışma, bu tür eğitim verilerinin nasıl oluşturulacağını ve bir kanal tahmini uygulamasında CNN'nin nasıl eğitileceğini gösterir. Ayrıca, lineer enterpolasyon ile alınan pilot sembolleri içeren görüntüleri işlemek için CNN kanal tahmininin nasıl kullanılacağını gösterir. Bu çalışma, pratik ve mükemmel tahmin edicilere kıyasla sinir ağı kanal tahmincisinin sonuçlarını görselleştirerek sona ermektedir.","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"5G Sistemleri için DL Tabanlı Kanal Tahmini\",\"authors\":\"Bircan Çalişir\",\"doi\":\"10.53070/bbd.1173848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bu çalışma, Derin Öğrenme ve 5G ile oluşturulan veriler kullanılarak kanal tahmini için bir evrişimsel sinir ağının (CNN) nasıl eğitileceğini gösterir. Eğitilmiş CNN, fiziksel aşağı bağlantı paylaşılan kanal (PDSCH) demodülasyon referans sinyalini (DM-RS) kullanarak tek girişli tek çıkışlı (SISO) modunda kanal tahmini gerçekleştirilmiştir. Kanal tahmini için genel yaklaşım, iletim kanalı içine değeri bilinen referans pilot sembolleri eklemek ve daha sonra bu pilot sembolleri kullanarak kanal yanıtının geri kalanını enterpolasyon yapmaktır. Kanal tahmini yapmak için derin öğrenme teknikleri de kullanılabilir. Örneğin, PDSCH kaynak ızgarasını 2 boyutlu bir görüntü olarak görüntüleyerek, kanal tahmini problemini, CNN'lerin etkili olduğu gürültü giderme veya süper çözünürlüğe benzer bir görüntü işleme problemine dönüştürebilir. Bu çalışma, bu tür eğitim verilerinin nasıl oluşturulacağını ve bir kanal tahmini uygulamasında CNN'nin nasıl eğitileceğini gösterir. Ayrıca, lineer enterpolasyon ile alınan pilot sembolleri içeren görüntüleri işlemek için CNN kanal tahmininin nasıl kullanılacağını gösterir. Bu çalışma, pratik ve mükemmel tahmin edicilere kıyasla sinir ağı kanal tahmincisinin sonuçlarını görselleştirerek sona ermektedir.\",\"PeriodicalId\":41917,\"journal\":{\"name\":\"Computer Science-AGH\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science-AGH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53070/bbd.1173848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science-AGH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53070/bbd.1173848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
这项研究展示了如何训练进化神经网络(CNN)使用深度学习和5G生成的数据进行估计。训练后的CNN使用信道(PDSCH)演示参考信号(DM-RS)共享物理下行链路在单输入模式(SISO)中进行信道预测。信道的一般方法是将已知的参考导频符号添加到通信信道,然后使用这些导频符号输入信道的其余响应。深度学习技术也可以用于预测渠道。Örneğin、PDSCH kaynakızgarasını2 boyutlu bir görüntüolarak görünüleyerek、kanal tahmini problemini、CNN'lerin etkili olduğu gürürültügiderme veya süperçözünúrlüğe benzer bir gèrü。这项研究显示了CNN将如何在这样的训练数据和频道预测中进行训练。它还展示了CNN信道估计将如何用于处理包含线性插值的图像。这将通过将神经网络投影仪的结果与工作、实践和优秀预测结果进行比较来实现可视化。
Bu çalışma, Derin Öğrenme ve 5G ile oluşturulan veriler kullanılarak kanal tahmini için bir evrişimsel sinir ağının (CNN) nasıl eğitileceğini gösterir. Eğitilmiş CNN, fiziksel aşağı bağlantı paylaşılan kanal (PDSCH) demodülasyon referans sinyalini (DM-RS) kullanarak tek girişli tek çıkışlı (SISO) modunda kanal tahmini gerçekleştirilmiştir. Kanal tahmini için genel yaklaşım, iletim kanalı içine değeri bilinen referans pilot sembolleri eklemek ve daha sonra bu pilot sembolleri kullanarak kanal yanıtının geri kalanını enterpolasyon yapmaktır. Kanal tahmini yapmak için derin öğrenme teknikleri de kullanılabilir. Örneğin, PDSCH kaynak ızgarasını 2 boyutlu bir görüntü olarak görüntüleyerek, kanal tahmini problemini, CNN'lerin etkili olduğu gürültü giderme veya süper çözünürlüğe benzer bir görüntü işleme problemine dönüştürebilir. Bu çalışma, bu tür eğitim verilerinin nasıl oluşturulacağını ve bir kanal tahmini uygulamasında CNN'nin nasıl eğitileceğini gösterir. Ayrıca, lineer enterpolasyon ile alınan pilot sembolleri içeren görüntüleri işlemek için CNN kanal tahmininin nasıl kullanılacağını gösterir. Bu çalışma, pratik ve mükemmel tahmin edicilere kıyasla sinir ağı kanal tahmincisinin sonuçlarını görselleştirerek sona ermektedir.