提高Tinker-HP分子建模包的性能[第v1.0条]

Luc-Henri Jolly, A. Duran, Louis Lagardère, J. Ponder, P. Ren, Jean‐Philip Piquemal
{"title":"提高Tinker-HP分子建模包的性能[第v1.0条]","authors":"Luc-Henri Jolly, A. Duran, Louis Lagardère, J. Ponder, P. Ren, Jean‐Philip Piquemal","doi":"10.33011/livecoms.1.2.10409","DOIUrl":null,"url":null,"abstract":"This living paper reviews the present High Performance Computing (HPC) capabilities of the Tinker-HP molecular modeling package. We focus here on the reference, double precision, massively parallel molecular dynamics engine present in Tinker-HP and dedicated to perform large scale simulations. We show how it can be adapted to recent Intel Central Processing Unit (CPU) petascale architectures. First, we discuss the new set of Intel Advanced Vector Extensions 512 (Intel AVX-512) instructions present in recent Intel processors (e.g., the Intel Xeon Scalable and Intel Xeon Phi 2nd generation processors) allowing for larger vectorization enhancements. These instructions constitute the central source of potential computational gains when using the latest processors, justifying important vectorization efforts for developers. We then briefly review the organization of the Tinker-HP code and identify the computational hotspots which require Intel AVX-512 optimization and we propose a general and optimal strategy to vectorize those particular parts of the code. We intended to present our optimization strategy in a pedagogical way so it could benefit to other researchers and students interested in gaining performances in their own software. Finally we present the performance enhancements obtained compared to the unoptimized code both sequentially and at the scaling limit in parallel for classical non-polarizable (CHARMM) and polarizable force fields (AMOEBA). This paper never ceases to be updated as we accumulate new data on the associated Github repository between new versions of this living paper.","PeriodicalId":74084,"journal":{"name":"Living journal of computational molecular science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Raising the Performance of the Tinker-HP Molecular Modeling Package [Article v1.0]\",\"authors\":\"Luc-Henri Jolly, A. Duran, Louis Lagardère, J. Ponder, P. Ren, Jean‐Philip Piquemal\",\"doi\":\"10.33011/livecoms.1.2.10409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This living paper reviews the present High Performance Computing (HPC) capabilities of the Tinker-HP molecular modeling package. We focus here on the reference, double precision, massively parallel molecular dynamics engine present in Tinker-HP and dedicated to perform large scale simulations. We show how it can be adapted to recent Intel Central Processing Unit (CPU) petascale architectures. First, we discuss the new set of Intel Advanced Vector Extensions 512 (Intel AVX-512) instructions present in recent Intel processors (e.g., the Intel Xeon Scalable and Intel Xeon Phi 2nd generation processors) allowing for larger vectorization enhancements. These instructions constitute the central source of potential computational gains when using the latest processors, justifying important vectorization efforts for developers. We then briefly review the organization of the Tinker-HP code and identify the computational hotspots which require Intel AVX-512 optimization and we propose a general and optimal strategy to vectorize those particular parts of the code. We intended to present our optimization strategy in a pedagogical way so it could benefit to other researchers and students interested in gaining performances in their own software. Finally we present the performance enhancements obtained compared to the unoptimized code both sequentially and at the scaling limit in parallel for classical non-polarizable (CHARMM) and polarizable force fields (AMOEBA). This paper never ceases to be updated as we accumulate new data on the associated Github repository between new versions of this living paper.\",\"PeriodicalId\":74084,\"journal\":{\"name\":\"Living journal of computational molecular science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Living journal of computational molecular science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33011/livecoms.1.2.10409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Living journal of computational molecular science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33011/livecoms.1.2.10409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文回顾了目前Tinker-HP分子建模包的高性能计算(HPC)能力。我们专注于参考,双精度,大规模并行分子动力学引擎目前在Tinker-HP,并致力于执行大规模模拟。我们将展示如何使其适应最新的英特尔中央处理单元(CPU)千兆级架构。首先,我们讨论了最新英特尔处理器(例如,英特尔至强可扩展和英特尔至强Phi第二代处理器)中出现的一组新的英特尔高级矢量扩展512(英特尔AVX-512)指令,允许更大的向量化增强。当使用最新的处理器时,这些指令构成了潜在计算增益的主要来源,为开发人员证明了重要的向量化工作的合理性。然后,我们简要回顾了Tinker-HP代码的组织结构,并确定了需要英特尔AVX-512优化的计算热点,并提出了一种通用的最佳策略来对代码的这些特定部分进行矢量化。我们打算以教学的方式呈现我们的优化策略,以便它可以使其他对自己的软件获得性能感兴趣的研究人员和学生受益。最后给出了在经典非极化力场(CHARMM)和极化力场(AMOEBA)下,与未优化代码相比,在顺序和并行缩放极限下获得的性能增强。当我们在相关的Github存储库中积累新数据时,本文永远不会停止更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Raising the Performance of the Tinker-HP Molecular Modeling Package [Article v1.0]
This living paper reviews the present High Performance Computing (HPC) capabilities of the Tinker-HP molecular modeling package. We focus here on the reference, double precision, massively parallel molecular dynamics engine present in Tinker-HP and dedicated to perform large scale simulations. We show how it can be adapted to recent Intel Central Processing Unit (CPU) petascale architectures. First, we discuss the new set of Intel Advanced Vector Extensions 512 (Intel AVX-512) instructions present in recent Intel processors (e.g., the Intel Xeon Scalable and Intel Xeon Phi 2nd generation processors) allowing for larger vectorization enhancements. These instructions constitute the central source of potential computational gains when using the latest processors, justifying important vectorization efforts for developers. We then briefly review the organization of the Tinker-HP code and identify the computational hotspots which require Intel AVX-512 optimization and we propose a general and optimal strategy to vectorize those particular parts of the code. We intended to present our optimization strategy in a pedagogical way so it could benefit to other researchers and students interested in gaining performances in their own software. Finally we present the performance enhancements obtained compared to the unoptimized code both sequentially and at the scaling limit in parallel for classical non-polarizable (CHARMM) and polarizable force fields (AMOEBA). This paper never ceases to be updated as we accumulate new data on the associated Github repository between new versions of this living paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Suite of Tutorials for the WESTPA 2.0 Rare-Events Sampling Software [Article v2.0]. Computing absolute binding affinities by Streamlined Alchemical Free Energy Perturbation [Article v1.0] Deep Learning for Molecules and Materials. Enhanced Sampling Methods for Molecular Dynamics Simulations [Article v1.0] A Guide to the Continuous Constant pH Molecular Dynamics Methods in Amber and CHARMM [Article v1.0].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1