基于接收信号强度指标到达角和最小二乘支持向量回归的移动节点三维定位算法

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Distributed Sensor Networks Pub Date : 2022-07-01 DOI:10.1177/15501329221111961
Lieping Zhang, Huihao Peng, Jiajie He, Shenglan Zhang, Zuqiong Zhang
{"title":"基于接收信号强度指标到达角和最小二乘支持向量回归的移动节点三维定位算法","authors":"Lieping Zhang, Huihao Peng, Jiajie He, Shenglan Zhang, Zuqiong Zhang","doi":"10.1177/15501329221111961","DOIUrl":null,"url":null,"abstract":"Node localization is one of the key technologies in the wireless sensor network research field, which is crucial to the high-accuracy localization of mobile nodes, but the positioning error of traditional algorithms such as received signal strength indicator and angle of arrival is more than 4 m, which has almost no practical value. For example, the localization accuracy of the localization algorithm based on received signal strength indicator will be reduced sharply when affected by signal reflection, multipath propagation, and other interference factors. To solve the problem, a three-dimensional localization algorithm of mobile nodes was proposed in this article based on received signal strength indicator–angle of arrival and least-squares support-vector regression, which fused the ranging information of received signal strength indicator algorithm and the angle of arrival algorithm and optimized the estimated distance of unknown nodes. Next, the mobile node model and least-squares support-vector regression modeling mechanism were built according to the hop count of the shortest distance between nodes. Finally, the unknown mobile nodes were localized based on least-squares support-vector regression modeling. The experimental results showed that compared with the localization algorithms without optimized ranging information or least-squares support-vector regression modeling, the algorithm proposed in this study exhibited significantly improved stability, a reduced mean localization error by more than 50%, and increased localization accuracy.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional localization algorithm of mobile nodes based on received signal strength indicator-angle of arrival and least-squares support-vector regression\",\"authors\":\"Lieping Zhang, Huihao Peng, Jiajie He, Shenglan Zhang, Zuqiong Zhang\",\"doi\":\"10.1177/15501329221111961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Node localization is one of the key technologies in the wireless sensor network research field, which is crucial to the high-accuracy localization of mobile nodes, but the positioning error of traditional algorithms such as received signal strength indicator and angle of arrival is more than 4 m, which has almost no practical value. For example, the localization accuracy of the localization algorithm based on received signal strength indicator will be reduced sharply when affected by signal reflection, multipath propagation, and other interference factors. To solve the problem, a three-dimensional localization algorithm of mobile nodes was proposed in this article based on received signal strength indicator–angle of arrival and least-squares support-vector regression, which fused the ranging information of received signal strength indicator algorithm and the angle of arrival algorithm and optimized the estimated distance of unknown nodes. Next, the mobile node model and least-squares support-vector regression modeling mechanism were built according to the hop count of the shortest distance between nodes. Finally, the unknown mobile nodes were localized based on least-squares support-vector regression modeling. The experimental results showed that compared with the localization algorithms without optimized ranging information or least-squares support-vector regression modeling, the algorithm proposed in this study exhibited significantly improved stability, a reduced mean localization error by more than 50%, and increased localization accuracy.\",\"PeriodicalId\":50327,\"journal\":{\"name\":\"International Journal of Distributed Sensor Networks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/15501329221111961\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221111961","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

节点定位是无线传感器网络研究领域的关键技术之一,对移动节点的高精度定位至关重要,但传统算法(如接收信号强度指标和到达角)的定位误差超过4 m、 这几乎没有实际价值。例如,当受到信号反射、多径传播和其他干扰因素的影响时,基于接收信号强度指示符的定位算法的定位精度将急剧降低。为了解决这一问题,本文提出了一种基于接收信号强度指标-到达角和最小二乘支持向量回归的移动节点三维定位算法,该算法融合了接收信号强度指示符算法和到达角算法的测距信息,优化了未知节点的估计距离。其次,根据节点间最短距离的跳数,建立了移动节点模型和最小二乘支持向量回归建模机制。最后,基于最小二乘支持向量回归模型对未知移动节点进行定位。实验结果表明,与没有优化测距信息或最小二乘支持向量回归建模的定位算法相比,本研究提出的算法具有显著的稳定性,平均定位误差降低了50%以上,定位精度提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three-dimensional localization algorithm of mobile nodes based on received signal strength indicator-angle of arrival and least-squares support-vector regression
Node localization is one of the key technologies in the wireless sensor network research field, which is crucial to the high-accuracy localization of mobile nodes, but the positioning error of traditional algorithms such as received signal strength indicator and angle of arrival is more than 4 m, which has almost no practical value. For example, the localization accuracy of the localization algorithm based on received signal strength indicator will be reduced sharply when affected by signal reflection, multipath propagation, and other interference factors. To solve the problem, a three-dimensional localization algorithm of mobile nodes was proposed in this article based on received signal strength indicator–angle of arrival and least-squares support-vector regression, which fused the ranging information of received signal strength indicator algorithm and the angle of arrival algorithm and optimized the estimated distance of unknown nodes. Next, the mobile node model and least-squares support-vector regression modeling mechanism were built according to the hop count of the shortest distance between nodes. Finally, the unknown mobile nodes were localized based on least-squares support-vector regression modeling. The experimental results showed that compared with the localization algorithms without optimized ranging information or least-squares support-vector regression modeling, the algorithm proposed in this study exhibited significantly improved stability, a reduced mean localization error by more than 50%, and increased localization accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
4.30%
发文量
94
审稿时长
3.6 months
期刊介绍: International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.
期刊最新文献
An Intrusion Detection Model Based on Feature Selection and Improved One-Dimensional Convolutional Neural Network Convex Combination for Wireless Localization Using Biased RSS Measurements Research on Visual SLAM Navigation Techniques for Dynamic Environments Improved Private Data Protection Scheme for Blockchain Smart Contracts Parameter Identification of Frame Structures by considering Shear Deformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1