P. Mascarenhas-Junior, Luis Antonio Bassetti, Juliana Manso Sayão
{"title":"宽嘴凯门鳄(鳄科:短吻鳄科)的骨组织学作为鳄鱼形态生理推断的工具","authors":"P. Mascarenhas-Junior, Luis Antonio Bassetti, Juliana Manso Sayão","doi":"10.36253/a_h-10079","DOIUrl":null,"url":null,"abstract":"Bone histology is an important tool for the interpretation of life patterns in animals of the past and extant fauna. The crocodylians have been studied as important inferential models for morphophysiological characteristics. We aimed to characterize the osteohistology of captive Caiman latirostris, identifying its microanatomy related to growth rates, ontogeny, and environmental conditions. We analyzed five pairs of humeri (proximal elements of the appendicular skeleton) and ribs (axial skeleton) of females’ caiman. Ribs showed, in general, woven-fibered tissues, with low vascularization and parallel-fibered bone and many resorption and erosion cavities. It presented lines of arrested growth (LAGs) in three individuals, without skeletochronological compatibility. Humeri showed a gradient of woven-fibered to parallel-fibered and lamellar-zonal bone as the individuals aging. We observed compacted coarse cancellous bone (CCCB) and a higher number of LAGs in older specimens. Ribs remodel faster than humerus, showing an intra-individual histovariability. The humeri indicated an evident growth pattern with different ontogeny stages and growth rates in different ages. Fast-growing tissues are uncommon in crocodylians, but basal metabolism and optimal growth conditions can lead to this. Bone histology of C. latirostris shows patterns that can be used as inferential models for extant and extinct groups, but we encourage further studies for a better understanding, under different environmental conditions, such as temperature and food availability.","PeriodicalId":50896,"journal":{"name":"Acta Herpetologica","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bone histology of Broad-snouted Caiman Caiman latirostris (Crocodylia: Alligatoridae) as tool for morphophysiological inferences in Crocodylia\",\"authors\":\"P. Mascarenhas-Junior, Luis Antonio Bassetti, Juliana Manso Sayão\",\"doi\":\"10.36253/a_h-10079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bone histology is an important tool for the interpretation of life patterns in animals of the past and extant fauna. The crocodylians have been studied as important inferential models for morphophysiological characteristics. We aimed to characterize the osteohistology of captive Caiman latirostris, identifying its microanatomy related to growth rates, ontogeny, and environmental conditions. We analyzed five pairs of humeri (proximal elements of the appendicular skeleton) and ribs (axial skeleton) of females’ caiman. Ribs showed, in general, woven-fibered tissues, with low vascularization and parallel-fibered bone and many resorption and erosion cavities. It presented lines of arrested growth (LAGs) in three individuals, without skeletochronological compatibility. Humeri showed a gradient of woven-fibered to parallel-fibered and lamellar-zonal bone as the individuals aging. We observed compacted coarse cancellous bone (CCCB) and a higher number of LAGs in older specimens. Ribs remodel faster than humerus, showing an intra-individual histovariability. The humeri indicated an evident growth pattern with different ontogeny stages and growth rates in different ages. Fast-growing tissues are uncommon in crocodylians, but basal metabolism and optimal growth conditions can lead to this. Bone histology of C. latirostris shows patterns that can be used as inferential models for extant and extinct groups, but we encourage further studies for a better understanding, under different environmental conditions, such as temperature and food availability.\",\"PeriodicalId\":50896,\"journal\":{\"name\":\"Acta Herpetologica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Herpetologica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.36253/a_h-10079\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Herpetologica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.36253/a_h-10079","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ZOOLOGY","Score":null,"Total":0}
Bone histology of Broad-snouted Caiman Caiman latirostris (Crocodylia: Alligatoridae) as tool for morphophysiological inferences in Crocodylia
Bone histology is an important tool for the interpretation of life patterns in animals of the past and extant fauna. The crocodylians have been studied as important inferential models for morphophysiological characteristics. We aimed to characterize the osteohistology of captive Caiman latirostris, identifying its microanatomy related to growth rates, ontogeny, and environmental conditions. We analyzed five pairs of humeri (proximal elements of the appendicular skeleton) and ribs (axial skeleton) of females’ caiman. Ribs showed, in general, woven-fibered tissues, with low vascularization and parallel-fibered bone and many resorption and erosion cavities. It presented lines of arrested growth (LAGs) in three individuals, without skeletochronological compatibility. Humeri showed a gradient of woven-fibered to parallel-fibered and lamellar-zonal bone as the individuals aging. We observed compacted coarse cancellous bone (CCCB) and a higher number of LAGs in older specimens. Ribs remodel faster than humerus, showing an intra-individual histovariability. The humeri indicated an evident growth pattern with different ontogeny stages and growth rates in different ages. Fast-growing tissues are uncommon in crocodylians, but basal metabolism and optimal growth conditions can lead to this. Bone histology of C. latirostris shows patterns that can be used as inferential models for extant and extinct groups, but we encourage further studies for a better understanding, under different environmental conditions, such as temperature and food availability.
期刊介绍:
Acta Herpetologica, a journal open to academics all over the world, offers itself as a new site for the presentation and discussion of the most recent results in the field of research on Amphibians and Reptiles, both living and extinct. The official journal of the Societas Herpetologica Italica (S.H.I.), Acta Herpetologica publishes original works – extended articles, short notes and book reviews – mostly in English, dealing with the biology and diversity of Amphibians and Reptiles.