{"title":"锥体分子的局域模到正态模的跃迁及其在代数模型中的振动描述","authors":"O. Guzmán-Juárez, E. Suárez, R. Lemus","doi":"10.1016/j.jms.2023.111775","DOIUrl":null,"url":null,"abstract":"<div><p><span>First a new perspective to study the local to normal mode transition in the series of pyramidal molecules is presented. Then a full study of the vibrational excitations of the series of pyramidal molecules XH</span><span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span><span> with X = P, As and Sb is given in the framework of a polyad-conserving Hamiltonian of a set of interacting Morse oscillators. The model is based on an algebraic representation of the Hamiltonian in terms of </span><span><math><mrow><mi>s</mi><mi>u</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>-operators. A simple Hamiltonian including both Fermi and Darling–Dennison interactions is considered. For the PH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> molecule a fit involving 64 experimental energies up to polyad 8 (energies up to 9054 cm<sup>−1</sup>) provided an <span><math><mrow><mi>rms</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>74</mn><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> using a Hamiltonian with <span><math><mrow><mn>14</mn><mo>+</mo><mn>3</mn></mrow></math></span>(frozen) parameters. For the AsH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, with 35 experimental energies the deviation obtained was <span><math><mrow><mi>rms</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>50</mn><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> with <span><math><mrow><mn>10</mn><mo>+</mo><mn>4</mn></mrow></math></span> parameters. Lastly, for the SbH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> molecule, considering 23 experimental energy levels an <span><math><mrow><mi>rms</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>86</mn><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> was reached with <span><math><mrow><mn>9</mn><mo>+</mo><mn>6</mn></mrow></math></span> parameters. In all cases the polyad scheme <span><math><mrow><mi>P</mi><mo>=</mo><mn>2</mn><mrow><mo>(</mo><msub><mrow><mi>ν</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>ν</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>ν</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span> was considered.</p></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study of the local to normal mode transition in pyramidal molecules and their vibrational description in terms of an algebraic model\",\"authors\":\"O. Guzmán-Juárez, E. Suárez, R. Lemus\",\"doi\":\"10.1016/j.jms.2023.111775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>First a new perspective to study the local to normal mode transition in the series of pyramidal molecules is presented. Then a full study of the vibrational excitations of the series of pyramidal molecules XH</span><span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span><span> with X = P, As and Sb is given in the framework of a polyad-conserving Hamiltonian of a set of interacting Morse oscillators. The model is based on an algebraic representation of the Hamiltonian in terms of </span><span><math><mrow><mi>s</mi><mi>u</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>-operators. A simple Hamiltonian including both Fermi and Darling–Dennison interactions is considered. For the PH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> molecule a fit involving 64 experimental energies up to polyad 8 (energies up to 9054 cm<sup>−1</sup>) provided an <span><math><mrow><mi>rms</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>74</mn><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> using a Hamiltonian with <span><math><mrow><mn>14</mn><mo>+</mo><mn>3</mn></mrow></math></span>(frozen) parameters. For the AsH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, with 35 experimental energies the deviation obtained was <span><math><mrow><mi>rms</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>50</mn><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> with <span><math><mrow><mn>10</mn><mo>+</mo><mn>4</mn></mrow></math></span> parameters. Lastly, for the SbH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> molecule, considering 23 experimental energy levels an <span><math><mrow><mi>rms</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>86</mn><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> was reached with <span><math><mrow><mn>9</mn><mo>+</mo><mn>6</mn></mrow></math></span> parameters. In all cases the polyad scheme <span><math><mrow><mi>P</mi><mo>=</mo><mn>2</mn><mrow><mo>(</mo><msub><mrow><mi>ν</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>ν</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>ν</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span> was considered.</p></div>\",\"PeriodicalId\":16367,\"journal\":{\"name\":\"Journal of Molecular Spectroscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Spectroscopy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022285223000401\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022285223000401","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
A study of the local to normal mode transition in pyramidal molecules and their vibrational description in terms of an algebraic model
First a new perspective to study the local to normal mode transition in the series of pyramidal molecules is presented. Then a full study of the vibrational excitations of the series of pyramidal molecules XH with X = P, As and Sb is given in the framework of a polyad-conserving Hamiltonian of a set of interacting Morse oscillators. The model is based on an algebraic representation of the Hamiltonian in terms of -operators. A simple Hamiltonian including both Fermi and Darling–Dennison interactions is considered. For the PH molecule a fit involving 64 experimental energies up to polyad 8 (energies up to 9054 cm−1) provided an using a Hamiltonian with (frozen) parameters. For the AsH, with 35 experimental energies the deviation obtained was with parameters. Lastly, for the SbH molecule, considering 23 experimental energy levels an was reached with parameters. In all cases the polyad scheme was considered.
期刊介绍:
The Journal of Molecular Spectroscopy presents experimental and theoretical articles on all subjects relevant to molecular spectroscopy and its modern applications. An international medium for the publication of some of the most significant research in the field, the Journal of Molecular Spectroscopy is an invaluable resource for astrophysicists, chemists, physicists, engineers, and others involved in molecular spectroscopy research and practice.