模拟墨西哥西北部太平洋浅层(<200米)温度剖面的统计方法

IF 0.5 4区 生物学 Q4 MARINE & FRESHWATER BIOLOGY Ciencias Marinas Pub Date : 2021-09-29 DOI:10.7773/cm.v47i3.3027
Emigdio Marín-Enríquez
{"title":"模拟墨西哥西北部太平洋浅层(<200米)温度剖面的统计方法","authors":"Emigdio Marín-Enríquez","doi":"10.7773/cm.v47i3.3027","DOIUrl":null,"url":null,"abstract":"Temperature is perhaps the most important seawater property. It is a measure of the energy content in the ocean and it affects the metabolic rates, distribution, and abundance of species that are important from the economic and ecological points of view. Satellite-derived oceanographic data have been widely used to assess spatiotemporal variations of sea surface temperature on broad scales; satellites, however, are unable to reach subsurface levels, and obtaining reliable subsurface water temperature data is achieved by either numerical modeling or direct observations, the latter representing a very high-cost alternative. In this paper, a method for modeling temperature profiles is presented. A generalized additive mixed model (GAMM) with a gamma error distribution and an inverse link function was used to model shallow (200 m) temperature profiles in the Pacific Ocean off northwestern Mexico. The dataset included 656 profiles that were linearly interpolated at depth, which resulted in 127,595 observations. The database covered an area from 18.5º to 25.8ºN and from –114.5º to –105.9ºW in a time span from June 2007 to November 2016. The model included temperature as response variable; depth, surface dynamic topography, wind stress curl, latitude, longitude, and the Oceanic Niño Index as covariates; and month as random effect. The final model explained 86% of the total deviance of the dataset used to fit the GAMM. Although important deviations between the observations and the predictions of the model were observed, the results of the validation process and of predictions made on an independent dataset (correlation of observed vs. predicted temperature, 0.93; root-mean-square error, 1.5 ºC) were comparable to the results obtained with more complex modeling techniques, suggesting that this statistical approach is a valuable tool for modeling oceanographic data.","PeriodicalId":50702,"journal":{"name":"Ciencias Marinas","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A statistical approach for modeling shallow (<200 m) temperature profiles in the Pacific Ocean off northwestern Mexico\",\"authors\":\"Emigdio Marín-Enríquez\",\"doi\":\"10.7773/cm.v47i3.3027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temperature is perhaps the most important seawater property. It is a measure of the energy content in the ocean and it affects the metabolic rates, distribution, and abundance of species that are important from the economic and ecological points of view. Satellite-derived oceanographic data have been widely used to assess spatiotemporal variations of sea surface temperature on broad scales; satellites, however, are unable to reach subsurface levels, and obtaining reliable subsurface water temperature data is achieved by either numerical modeling or direct observations, the latter representing a very high-cost alternative. In this paper, a method for modeling temperature profiles is presented. A generalized additive mixed model (GAMM) with a gamma error distribution and an inverse link function was used to model shallow (200 m) temperature profiles in the Pacific Ocean off northwestern Mexico. The dataset included 656 profiles that were linearly interpolated at depth, which resulted in 127,595 observations. The database covered an area from 18.5º to 25.8ºN and from –114.5º to –105.9ºW in a time span from June 2007 to November 2016. The model included temperature as response variable; depth, surface dynamic topography, wind stress curl, latitude, longitude, and the Oceanic Niño Index as covariates; and month as random effect. The final model explained 86% of the total deviance of the dataset used to fit the GAMM. Although important deviations between the observations and the predictions of the model were observed, the results of the validation process and of predictions made on an independent dataset (correlation of observed vs. predicted temperature, 0.93; root-mean-square error, 1.5 ºC) were comparable to the results obtained with more complex modeling techniques, suggesting that this statistical approach is a valuable tool for modeling oceanographic data.\",\"PeriodicalId\":50702,\"journal\":{\"name\":\"Ciencias Marinas\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ciencias Marinas\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7773/cm.v47i3.3027\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciencias Marinas","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7773/cm.v47i3.3027","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

温度也许是海水最重要的特性。它是衡量海洋中能量含量的一种方法,它影响着从经济和生态角度来看很重要的物种的代谢率、分布和丰度。卫星海洋数据已被广泛用于评估大尺度海温的时空变化;然而,卫星无法到达地下水平,要获得可靠的地下水温数据,要么通过数值模拟,要么通过直接观测,后者是一种成本非常高的替代方法。本文提出了一种模拟温度分布的方法。采用广义加性混合模式(GAMM),结合gamma误差分布和逆链接函数,对墨西哥西北部太平洋浅层(200 m)温度剖面进行了模拟。该数据集包括656个剖面,在深度上线性插值,得到127,595个观测值。数据库覆盖范围为2007年6月至2016年11月,北纬18.5º至25.8º,西经-114.5º至-105.9º。模型将温度作为响应变量;深度、地表动力地形、风应力旋度、纬度、经度和Oceanic Niño Index作为协变量;月作为随机效应。最终模型解释了用于拟合GAMM的数据集总偏差的86%。虽然观测结果和模型预测之间存在重要偏差,但验证过程的结果和在独立数据集上进行的预测(观测温度与预测温度的相关性,0.93;均方根误差(1.5ºC)与使用更复杂的建模技术获得的结果相当,这表明该统计方法是模拟海洋数据的有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A statistical approach for modeling shallow (<200 m) temperature profiles in the Pacific Ocean off northwestern Mexico
Temperature is perhaps the most important seawater property. It is a measure of the energy content in the ocean and it affects the metabolic rates, distribution, and abundance of species that are important from the economic and ecological points of view. Satellite-derived oceanographic data have been widely used to assess spatiotemporal variations of sea surface temperature on broad scales; satellites, however, are unable to reach subsurface levels, and obtaining reliable subsurface water temperature data is achieved by either numerical modeling or direct observations, the latter representing a very high-cost alternative. In this paper, a method for modeling temperature profiles is presented. A generalized additive mixed model (GAMM) with a gamma error distribution and an inverse link function was used to model shallow (200 m) temperature profiles in the Pacific Ocean off northwestern Mexico. The dataset included 656 profiles that were linearly interpolated at depth, which resulted in 127,595 observations. The database covered an area from 18.5º to 25.8ºN and from –114.5º to –105.9ºW in a time span from June 2007 to November 2016. The model included temperature as response variable; depth, surface dynamic topography, wind stress curl, latitude, longitude, and the Oceanic Niño Index as covariates; and month as random effect. The final model explained 86% of the total deviance of the dataset used to fit the GAMM. Although important deviations between the observations and the predictions of the model were observed, the results of the validation process and of predictions made on an independent dataset (correlation of observed vs. predicted temperature, 0.93; root-mean-square error, 1.5 ºC) were comparable to the results obtained with more complex modeling techniques, suggesting that this statistical approach is a valuable tool for modeling oceanographic data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ciencias Marinas
Ciencias Marinas 生物-海洋与淡水生物学
CiteScore
1.10
自引率
0.00%
发文量
9
审稿时长
>12 weeks
期刊介绍: A bilingual open-access publication, Ciencias Marinas (CM) is an international peer-reviewed journal that contains original research findings in all areas of marine science. It is published quarterly by the Autonomous University of Baja California, Mexico, and all its contents are publicly available on our journal website. Though a limited number of copies are still printed, the journal is mainly distributed in its electronic format. CM was conceived in 1973 as part of an academic project aimed to entice local researchers to publicly disclose their findings by adopting the culture of peer-review publishing. This academic project evolved into an international journal after accepting papers from researchers in the United States and, eventually, other parts of the world. Because of the diversity in authorship, CM issues were initially published in either Spanish or English, and occasionally in both languages. It was not until 1984 when CM included both language versions of all its contents, and it then became the fully bilingual journal it still is today. At CM we believe our inclusive format allows us not only to address a wider range of submissions from international authors but also to make published findings available to a wider international audience. So whether you are looking for information on the redfish in Icelandic waters or the physical and biological properties of the Gulf of California, feel free to peruse CM contents. You may find them to provide source material for your research.
期刊最新文献
Exploring the microbial community and biotechnological potential of the sponge Xestospongia sp. from an anchialine cave in the Yucatán Peninsula Fluorescence patterns and diversity of hydrozoans from Bocas del Toro, Panama Age and growth of larval Pacific flagfin mojarra (Eucinostomus currani) in coastal Ecuador based on otolith analysis Uso de macroalgas intermareales como bioindicadores de disturbio antropogénico por nutrientes en las costas rocosas del Pacífico mexicano central tropical Efecto de la comunidad bacteriana en el crecimiento, pigmentos y toxinas paralizantes en el dinoflagelado Gymnodinium catenatum (Graham)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1