波浪蜂窝对夹层结构弯曲性能影响的研究

IF 3.5 3区 材料科学 Q1 ENGINEERING, MECHANICAL Journal of Sandwich Structures & Materials Pub Date : 2022-06-01 DOI:10.1177/10996362221108973
Alparslan Solak, B. A. Temiztas, Berna Bolat
{"title":"波浪蜂窝对夹层结构弯曲性能影响的研究","authors":"Alparslan Solak, B. A. Temiztas, Berna Bolat","doi":"10.1177/10996362221108973","DOIUrl":null,"url":null,"abstract":"Sandwich structures are frequently used in structural areas where lightness and strength are essential. These structures are indispensable for sailing boats, and ground and air vehicles. The base purpose of this study is to investigate the effect of wave parameters on the sandwich structure. The data obtained from the bending tests of the model created using Ls-Dyna was compared with the experimental data of the literature. There is a 3.05% difference between the peak force in experimental and Ls-Dyna. The force-deformation plots are coherent, and the progressive images of the sandwich structure during bending are similar. In addition, using theoretical approaches, the highest force and the amount of collapse during bending were determined. There is a difference of 3.1% between the theoretical approach and Ls-Dyna values. Thus, the Ls-Dyna model was validated. The flat cell walls of the honeycomb were modeled as a sine wave. Four wave numbers and wave amplitudes were used. In this way, 16 different analysis files were created. The results show that the new sandwich structure’s specific peak force and specific energy absorption (SEA) increased by 7–110% compared to the ordinary flat walled sandwich structure. This research will assist in the design of new sandwich structures.","PeriodicalId":17215,"journal":{"name":"Journal of Sandwich Structures & Materials","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Investigation of the effect of wavy honeycomb on the bending performance of the sandwich structure\",\"authors\":\"Alparslan Solak, B. A. Temiztas, Berna Bolat\",\"doi\":\"10.1177/10996362221108973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sandwich structures are frequently used in structural areas where lightness and strength are essential. These structures are indispensable for sailing boats, and ground and air vehicles. The base purpose of this study is to investigate the effect of wave parameters on the sandwich structure. The data obtained from the bending tests of the model created using Ls-Dyna was compared with the experimental data of the literature. There is a 3.05% difference between the peak force in experimental and Ls-Dyna. The force-deformation plots are coherent, and the progressive images of the sandwich structure during bending are similar. In addition, using theoretical approaches, the highest force and the amount of collapse during bending were determined. There is a difference of 3.1% between the theoretical approach and Ls-Dyna values. Thus, the Ls-Dyna model was validated. The flat cell walls of the honeycomb were modeled as a sine wave. Four wave numbers and wave amplitudes were used. In this way, 16 different analysis files were created. The results show that the new sandwich structure’s specific peak force and specific energy absorption (SEA) increased by 7–110% compared to the ordinary flat walled sandwich structure. This research will assist in the design of new sandwich structures.\",\"PeriodicalId\":17215,\"journal\":{\"name\":\"Journal of Sandwich Structures & Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sandwich Structures & Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/10996362221108973\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sandwich Structures & Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/10996362221108973","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

摘要

夹层结构经常用于结构领域的轻便和强度是必不可少的。这些结构对于帆船、地面和空中交通工具是必不可少的。本研究的基本目的是探讨波浪参数对夹层结构的影响。利用Ls-Dyna建立的模型的弯曲试验数据与文献的实验数据进行了比较。实验得到的峰值力与Ls-Dyna的峰值力相差3.05%。受力变形图是一致的,夹层结构在弯曲过程中的渐进图像是相似的。此外,采用理论方法,确定了弯曲过程中的最大受力和坍塌量。理论方法与Ls-Dyna值之间的差异为3.1%。因此,Ls-Dyna模型得到了验证。蜂窝的扁平细胞壁被建模为正弦波。使用了四种波数和波幅。通过这种方式,创建了16个不同的分析文件。结果表明:与普通平壁夹层结构相比,新型夹层结构的比峰力和比能吸收提高了7 ~ 110%;这项研究将有助于新的夹层结构的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the effect of wavy honeycomb on the bending performance of the sandwich structure
Sandwich structures are frequently used in structural areas where lightness and strength are essential. These structures are indispensable for sailing boats, and ground and air vehicles. The base purpose of this study is to investigate the effect of wave parameters on the sandwich structure. The data obtained from the bending tests of the model created using Ls-Dyna was compared with the experimental data of the literature. There is a 3.05% difference between the peak force in experimental and Ls-Dyna. The force-deformation plots are coherent, and the progressive images of the sandwich structure during bending are similar. In addition, using theoretical approaches, the highest force and the amount of collapse during bending were determined. There is a difference of 3.1% between the theoretical approach and Ls-Dyna values. Thus, the Ls-Dyna model was validated. The flat cell walls of the honeycomb were modeled as a sine wave. Four wave numbers and wave amplitudes were used. In this way, 16 different analysis files were created. The results show that the new sandwich structure’s specific peak force and specific energy absorption (SEA) increased by 7–110% compared to the ordinary flat walled sandwich structure. This research will assist in the design of new sandwich structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sandwich Structures & Materials
Journal of Sandwich Structures & Materials 工程技术-材料科学:表征与测试
CiteScore
9.60
自引率
2.60%
发文量
49
审稿时长
7 months
期刊介绍: The Journal of Sandwich Structures and Materials is an international peer reviewed journal that provides a means of communication to fellow engineers and scientists by providing an archival record of developments in the science, technology, and professional practices of sandwich construction throughout the world. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Fundamental mechanical relations of open-cell metal foam composite materials with reticular porous structure Bond strength empirical-mathematical equation and optimization of Al1050/AISI304 bilayer sheets fabricated by cold roll bonding method Flexural and impact response of sandwich panels with Nomex honeycomb core and hybrid fiber composite skins Global buckling response of sandwich panels with additively manufactured lattice cores Numerical study on structured sandwich panels exposed to spherical air explosions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1