Aso Hajirasouli, S. Banihashemi, Paul Sanders, F. Rahimian
{"title":"建筑设计工作室中基于BIM的虚拟现实(VR)教学框架","authors":"Aso Hajirasouli, S. Banihashemi, Paul Sanders, F. Rahimian","doi":"10.1108/sasbe-07-2022-0149","DOIUrl":null,"url":null,"abstract":"PurposeOver the past decade, architecture, construction and engineering (ACE) industries have been evolving from traditional practices into more current, interdisciplinary and technology integrated methods. Intricate digital tools and mobile computing such as computational design, simulation and immersive technologies, have been extensively used for different purposes in this field. Immersive technologies such as augmented reality (AR) and virtual reality (VR) have proven to be very advantageous while the research is in its infancy in the field. Therefore, this study aims to develop an immersive pedagogical framework that can create a more engaging teaching and learning environment and enhance students' skill in the ACE field.Design/methodology/approachThis study developed a BIM-enabled VR-based pedagogical framework for the design studio teaching in architectural courses, using a qualitative approach. A case study method was then used to test and validate this developed framework. Architectural Master Design Studio B, at Queensland University of Technology (QUT) was selected as the case study, with South Bank Corporation (SBC) as the industry partner and stakeholder of this project.FindingsThe practicality and efficiency of this framework was confirmed through increased students' and stakeholders' engagement. Some of the additional outcomes of this digitally enhanced pedagogical framework are as follows: enhanced students' engagement, active participation, collective knowledge construction and increased creativity and motivation.Research limitations/implicationsThe results have proven that the developed technology-enhanced and digitally enabled teaching pedagogy and framework can be successfully implemented into architectural design studios. This can bridge the existing gap between the technological advancements in ACE industry and higher education teaching and learning methods and outcomes. It is also expected that such innovative pedagogies will future-proof students' skill set as the future generation of architects and built environment workers. A major limitation of this framework is accessibility to the required hardware such as HMD, controllers, high-capacity computers and so on. Although the required software is widely accessible, particularly through universities licencing, the required hardware is yet to be readily and widely available and accessible.Practical implicationsThe result of this study can be implemented in the architectural design studios and other ACE related classrooms in higher educations. This can bridge the existing gap between the technological advancements in ACE industry, and higher education teaching and learning methods and outcomes. It is also expected that such innovative pedagogies will future-proof students' skill set.Social implicationsSuch technology-enhanced teaching methods have proven to enhance students' engagement, active participation, collective knowledge construction and increased creativity and motivation.Originality/valueDespite the advancement of digital technologies in ACE industry, the application of such technologies and tools in higher education context are not yet completely explored and still scarce. Besides, there is still a significant gap in the body of knowledge about developing teaching methods and established pedagogies that embrace the usage of such technologies in the design and architecture curricula.","PeriodicalId":45779,"journal":{"name":"Smart and Sustainable Built Environment","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BIM-enabled virtual reality (VR)-based pedagogical framework in architectural design studios\",\"authors\":\"Aso Hajirasouli, S. Banihashemi, Paul Sanders, F. Rahimian\",\"doi\":\"10.1108/sasbe-07-2022-0149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeOver the past decade, architecture, construction and engineering (ACE) industries have been evolving from traditional practices into more current, interdisciplinary and technology integrated methods. Intricate digital tools and mobile computing such as computational design, simulation and immersive technologies, have been extensively used for different purposes in this field. Immersive technologies such as augmented reality (AR) and virtual reality (VR) have proven to be very advantageous while the research is in its infancy in the field. Therefore, this study aims to develop an immersive pedagogical framework that can create a more engaging teaching and learning environment and enhance students' skill in the ACE field.Design/methodology/approachThis study developed a BIM-enabled VR-based pedagogical framework for the design studio teaching in architectural courses, using a qualitative approach. A case study method was then used to test and validate this developed framework. Architectural Master Design Studio B, at Queensland University of Technology (QUT) was selected as the case study, with South Bank Corporation (SBC) as the industry partner and stakeholder of this project.FindingsThe practicality and efficiency of this framework was confirmed through increased students' and stakeholders' engagement. Some of the additional outcomes of this digitally enhanced pedagogical framework are as follows: enhanced students' engagement, active participation, collective knowledge construction and increased creativity and motivation.Research limitations/implicationsThe results have proven that the developed technology-enhanced and digitally enabled teaching pedagogy and framework can be successfully implemented into architectural design studios. This can bridge the existing gap between the technological advancements in ACE industry and higher education teaching and learning methods and outcomes. It is also expected that such innovative pedagogies will future-proof students' skill set as the future generation of architects and built environment workers. A major limitation of this framework is accessibility to the required hardware such as HMD, controllers, high-capacity computers and so on. Although the required software is widely accessible, particularly through universities licencing, the required hardware is yet to be readily and widely available and accessible.Practical implicationsThe result of this study can be implemented in the architectural design studios and other ACE related classrooms in higher educations. This can bridge the existing gap between the technological advancements in ACE industry, and higher education teaching and learning methods and outcomes. It is also expected that such innovative pedagogies will future-proof students' skill set.Social implicationsSuch technology-enhanced teaching methods have proven to enhance students' engagement, active participation, collective knowledge construction and increased creativity and motivation.Originality/valueDespite the advancement of digital technologies in ACE industry, the application of such technologies and tools in higher education context are not yet completely explored and still scarce. Besides, there is still a significant gap in the body of knowledge about developing teaching methods and established pedagogies that embrace the usage of such technologies in the design and architecture curricula.\",\"PeriodicalId\":45779,\"journal\":{\"name\":\"Smart and Sustainable Built Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart and Sustainable Built Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/sasbe-07-2022-0149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart and Sustainable Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/sasbe-07-2022-0149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
BIM-enabled virtual reality (VR)-based pedagogical framework in architectural design studios
PurposeOver the past decade, architecture, construction and engineering (ACE) industries have been evolving from traditional practices into more current, interdisciplinary and technology integrated methods. Intricate digital tools and mobile computing such as computational design, simulation and immersive technologies, have been extensively used for different purposes in this field. Immersive technologies such as augmented reality (AR) and virtual reality (VR) have proven to be very advantageous while the research is in its infancy in the field. Therefore, this study aims to develop an immersive pedagogical framework that can create a more engaging teaching and learning environment and enhance students' skill in the ACE field.Design/methodology/approachThis study developed a BIM-enabled VR-based pedagogical framework for the design studio teaching in architectural courses, using a qualitative approach. A case study method was then used to test and validate this developed framework. Architectural Master Design Studio B, at Queensland University of Technology (QUT) was selected as the case study, with South Bank Corporation (SBC) as the industry partner and stakeholder of this project.FindingsThe practicality and efficiency of this framework was confirmed through increased students' and stakeholders' engagement. Some of the additional outcomes of this digitally enhanced pedagogical framework are as follows: enhanced students' engagement, active participation, collective knowledge construction and increased creativity and motivation.Research limitations/implicationsThe results have proven that the developed technology-enhanced and digitally enabled teaching pedagogy and framework can be successfully implemented into architectural design studios. This can bridge the existing gap between the technological advancements in ACE industry and higher education teaching and learning methods and outcomes. It is also expected that such innovative pedagogies will future-proof students' skill set as the future generation of architects and built environment workers. A major limitation of this framework is accessibility to the required hardware such as HMD, controllers, high-capacity computers and so on. Although the required software is widely accessible, particularly through universities licencing, the required hardware is yet to be readily and widely available and accessible.Practical implicationsThe result of this study can be implemented in the architectural design studios and other ACE related classrooms in higher educations. This can bridge the existing gap between the technological advancements in ACE industry, and higher education teaching and learning methods and outcomes. It is also expected that such innovative pedagogies will future-proof students' skill set.Social implicationsSuch technology-enhanced teaching methods have proven to enhance students' engagement, active participation, collective knowledge construction and increased creativity and motivation.Originality/valueDespite the advancement of digital technologies in ACE industry, the application of such technologies and tools in higher education context are not yet completely explored and still scarce. Besides, there is still a significant gap in the body of knowledge about developing teaching methods and established pedagogies that embrace the usage of such technologies in the design and architecture curricula.